Difference between revisions of "मापने योग्य स्थान"

From alpha
Jump to navigation Jump to search
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
गणित में, मापने योग्य स्थान या बोरेल स्थान<ref name="eommeasurablespace" />[[माप सिद्धांत]] में एक मूल वस्तु है। इसमें [[सेट (गणित)|समुच्चय (गणित)]] और सिग्मा-बीजगणित σ-बीजगणित होता है, जो मापे जाने वाले  [[सबसेट|उपसमुच्चय]] को परिभाषित करता है।
गणित में, मापने योग्य स्थान या बोरेल स्थान<ref name="eommeasurablespace" />[[माप सिद्धांत]] में एक मूल वस्तु है। इसमें [[सेट (गणित)|समुच्चय (गणित)]] और सिग्मा (Σ) -बीजगणित σ-बीजगणित होता है, जो मापे जाने वाले  [[सबसेट|उपसमुच्चय]] को परिभाषित करता है।


== परिभाषा ==
== परिभाषा ==


समुच्चय पर ध्यान करें <math>X</math> और सिग्मा-बीजगणित σ-बीजगणित <math>\mathcal A</math> पर <math>X.</math> फिर टपल <math>(X, \mathcal A)</math> मापने योग्य स्थान कहा जाता है।<ref name="Klenke18" />
समुच्चय पर ध्यान दिया जाये तो <math>X</math> और सिग्मा-बीजगणित σ-बीजगणित <math>\mathcal A</math> पर <math>X.</math> है, फिर टपल <math>(X, \mathcal A)</math> मापने योग्य स्थान कहा जाता है।<ref name="Klenke18" />


ध्यान दें कि एक माप स्थान के विपरीत, मापने योग्य स्थान के लिए कोई माप (गणित) की आवश्यकता नहीं है।
ध्यान दें कि माप स्थान के विपरीत, मापने योग्य स्थान के लिए कोई माप (गणित) की आवश्यकता नहीं है।


== उदाहरण ==
== उदाहरण ==


समुच्चय पर नजर:
समुच्चय पर ध्यान दें तो:
<math display=block>X = \{1,2,3\}.</math>
<math display=block>X = \{1,2,3\}.</math>
एक संभव <math>\sigma</math>-बीजगणित होगा:
एक संभव <math>\sigma</math>-बीजगणित होगा:
<math display=block>\mathcal A_1 = \{X, \varnothing\}.</math>
<math display=block>\mathcal A_1 = \{X, \varnothing\}.</math>
तब <math>\left(X, \mathcal A_1\right)</math> मापने योग्य स्थान है। एक और संभव <math>\sigma</math>-बीजगणित पर स्थापित घात समुच्चय होगी <math>X</math>:
तब <math>\left(X, \mathcal A_1\right)</math> मापने योग्य स्थान है। एक और संभव <math>\sigma</math>-बीजगणित पर स्थापित घात समुच्चय होगी <math>X</math>:
<math display=block>\mathcal A_2 = \mathcal P(X).</math>
<math display=block>\mathcal A_2 = \mathcal P(X).</math>
इसके साथ ही समुच्चय पर दूसरा मापनीय स्थान <math>X</math> द्वारा दिया गया है <math>\left(X, \mathcal A_2\right).</math>
इसके साथ ही समुच्चय पर दूसरा मापनीय स्थान <math>X</math> द्वारा दिया गया है <math>\left(X, \mathcal A_2\right).</math>
== सामान्य मापने योग्य स्थान ==
== सामान्य मापने योग्य स्थान ==


Line 47: Line 47:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 21/03/2023]]
[[Category:Created On 21/03/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 19:57, 13 June 2023

गणित में, मापने योग्य स्थान या बोरेल स्थान[1]माप सिद्धांत में एक मूल वस्तु है। इसमें समुच्चय (गणित) और सिग्मा (Σ) -बीजगणित σ-बीजगणित होता है, जो मापे जाने वाले उपसमुच्चय को परिभाषित करता है।

परिभाषा

समुच्चय पर ध्यान दिया जाये तो और सिग्मा-बीजगणित σ-बीजगणित पर है, फिर टपल मापने योग्य स्थान कहा जाता है।[2]

ध्यान दें कि माप स्थान के विपरीत, मापने योग्य स्थान के लिए कोई माप (गणित) की आवश्यकता नहीं है।

उदाहरण

समुच्चय पर ध्यान दें तो:

एक संभव -बीजगणित होगा:
तब मापने योग्य स्थान है। एक और संभव -बीजगणित पर स्थापित घात समुच्चय होगी :
इसके साथ ही समुच्चय पर दूसरा मापनीय स्थान द्वारा दिया गया है

सामान्य मापने योग्य स्थान

अगर परिमित या गणनीय रूप से अनंत है, -बीजगणित सबसे अधिक बार होता है घात समुच्चय है इसलिए यह मापने योग्य स्थान की ओर जाता है

अगर टोपोलॉजिकल स्पेस है, द -बीजगणित सामान्यतः बोरेल सिग्मा बीजगणित है| बोरेल -बीजगणित इसलिए यह मापने योग्य स्थान की ओर जाता है यह सभी टोपोलॉजिकल स्पेस जैसे कि वास्तविक संख्या के लिए सामान्य है

बोरेल रिक्त स्थान के साथ अस्पष्टता

बोरेल स्पेस शब्द का प्रयोग विभिन्न प्रकार के मापने योग्य स्थानों के लिए किया जाता है। यह संदर्भित कर सकता है

  • कोई भी मापने योग्य स्थान, इसलिए यह ऊपर परिभाषित अनुसार मापने योग्य स्थान का पर्याय है [1]* एक औसत दर्जे का स्थान जो बोरेल समरूपता है वास्तविक संख्याओं के एक औसत दर्जे का उपसमुच्चय (फिर से बोरेल के साथ) -बीजगणित)[3]

यह भी देखें

संदर्भ

  1. 1.0 1.1 Sazonov, V.V. (2001) [1994], "Measurable space", Encyclopedia of Mathematics, EMS Press
  2. Klenke, Achim (2008). Probability Theory. Berlin: Springer. p. 18. doi:10.1007/978-1-84800-048-3. ISBN 978-1-84800-047-6.
  3. Kallenberg, Olav (2017). Random Measures, Theory and Applications. Probability Theory and Stochastic Modelling. Vol. 77. Switzerland: Springer. p. 15. doi:10.1007/978-3-319-41598-7. ISBN 978-3-319-41596-3.