Difference between revisions of "User:Manidh"

From alpha
Jump to navigation Jump to search
Line 78: Line 78:


=== असत्य स्थिति का नियम: ===
=== असत्य स्थिति का नियम: ===
इस समीकरण का हल इस प्रकार दिया गया है:
"'किसी भी वांछित मात्रा को रिक्त स्थान पर रखना'; कोई भी वांछित मात्रा 1 है; 'फिर श्रृंखला का निर्माण करें।
{| class="wikitable"
|+
|1
|2
|2 3
|6 4
|-
|1
|1
|1 1
|1 1
|}
'गुणा किया हुआ'
{| class="wikitable"
|+
|1
|2
|6
|24
|}

Revision as of 16:53, 20 January 2022

समीकरण

समीकरण बनाना

किसी भी प्रकार के समीकरण के वास्तविक समाधान की ओर बढ़ने से पहले, इसे हल के लिए तैयार करने के लिए कुछ प्रारंभिक संक्रियाओं को करना आवश्यक है।

अभी भी अधिक प्रारंभिक कार्य प्रस्तावित समस्या की स्थितियों से समीकरण (सामी-करण, सामी-कारा या सामी-क्रिया; समा, बराबर और कु से करना; इसलिए शाब्दिक रूप से, समान बनाना) बनाने का है। इस तरह के प्रारंभिक कार्य के लिए बीजगणित या अंकगणित के एक या एक से अधिक मौलिक संचालन के आवेदन की आवश्यकता हो सकती है।

भास्कर द्वितीय कहते हैं: "यवत-तवत को अज्ञात मात्रा के मूल्य के रूप में माना जाता है। फिर जैसा कि विशेष रूप से बताया गया है-एक समीकरण के दो बराबर पक्षों को घटाना, जोड़ना, गुणा करना या विभाजित करना बहुत सावधानी से बनाया जाना चाहिए।

बीजीय संकेतन

  • अज्ञात संख्याओं के लिए उपयोग किए जाने वाले प्रतीकों में यस्वत-तस्वत् (जितना जितना हो) के प्रारंभिक शब्दांश, कासलका (काला) का कश, नलका (नीला) का नंबर, पुत (पीला) आदि का पु शामिल है।
  • दो अज्ञातों के गुणनफल को उनके बाद रखे भाविता (उत्पाद) के प्रारंभिक शब्दांश भा द्वारा दर्शाया जाता है। शक्तियों को वर्गा (वर्ग), घाना के घ (घन) के प्रारंभिक अक्षरों वा द्वारा दर्शाया गया है; वावा का मतलब वर्गवर्ग, चौथी शक्ति है। कभी-कभी घट (उत्पाद) का प्रारंभिक शब्दांश घा शक्तियों के योग के लिए होता है।
  • प्रतीक के बगल में एक गुणांक रखा गया है। अचर पद को rūpa (रूप) के प्रारंभिक प्रतीक rū द्वारा निरूपित किया जाता है।
  • ऋणात्मक पूर्णांक के ऊपर एक बिंदु रखा गया है
  • एक समीकरण के दो पक्षों को एक दूसरे के नीचे रखा जाता है। इस प्रकार समीकरण X4 - 2X2 - 400x = 9999; के रूप में लिखा गया है


यावव 1 याव 2● या 400● 0

यावव 0 याव 0 या रू 9999

जिसका अर्थ है या के लिए x लिखना

x4 -2x2 -400x+0 = 0x4 +0x2+0x+9999

यदि कई अज्ञात हैं, तो एक ही तरह के लोगों को एक ही कॉलम में शून्य गुणांक के साथ लिखा जाता है, यदि आवश्यक हो। इस प्रकार समीकरण

197x - 1644y - z = 6302 द्वारा दर्शाया गया है

या 197 का 1644● नी 1● रु 0

या 0 का 0 नी 0 रु 6302

जिसका अर्थ है, k के लिए y और ni . के लिए z डालना

197x - 1644y - z + 0 = 0x + 0y + 0z + 6302।

भास्कर द्वितीय कहते हैं:

"फिर इसके एक तरफ अज्ञात (समीकरण) को दूसरी तरफ अज्ञात से घटाया जाना चाहिए, इसी तरह अज्ञात के वर्ग और अन्य शक्तियां भी;

दूसरी तरफ की ज्ञात मात्राओं को दूसरी तरफ की ज्ञात मात्राओं से घटाया जाना चाहिए।"

निम्नलिखित दृष्टांत भास्कर II के बीजगणित से है:

"इस प्रकार दोनों पक्ष हैं

हां 4 या 34● रु 72

हां वा 0 या 0 रु 90

पूर्ण समाशोधन (समाशोधन) पर, दोनों पक्षों के अवशेष हैं

या वा 4 या 34● रु 0

हां वा 0 या 0 रु 18

यानी, 4x2 -34x= 18

समीकरणों का वर्गीकरण

ऐसा लगता है कि समीकरणों का सबसे पहला हिंदू वर्गीकरण उनकी डिग्री के अनुसार हुआ है, जैसे कि सरल (तकनीकी रूप से यवत तवत कहा जाता है), द्विघात (वर्गा), घन (घाना) और द्विघात (वर्ग-वर्ग)। इसका संदर्भ लगभग 300 ईसा पूर्व के एक विहित कार्य में मिलता है। लेकिन आगे की पुष्टि के सबूत के अभाव में, हम इसके बारे में सुनिश्चित नहीं हो सकते। ब्रह्मगुप्त (628) ने समीकरणों को इस प्रकार वर्गीकृत किया है: (I) एक अज्ञात में समीकरण (एक-वर्ण-समीकरण), (2) कई अज्ञात में समीकरण (अनेक-वर्ण-समीकरण), और (3) अज्ञात के उत्पादों से जुड़े समीकरण (भैविता) )

प्रथम वर्ग को फिर से दो उप वर्गों में विभाजित किया गया है, अर्थात, (i) रैखिक समीकरण, और (ii) द्विघात समीकरण (अव्यक्त-वर्ग-समिकरण)। यहाँ से हमारे पास समीकरणों को उनकी डिग्री के अनुसार वर्गीकृत करने की हमारी वर्तमान पद्धति की शुरुआत है। पृथुदकास्वामी (860) द्वारा अपनाई गई वर्गीकरण पद्धति थोड़ी भिन्न है। उनके चार वर्ग हैं: (1) एक अज्ञात के साथ रैखिक समीकरण, (2) अधिक अज्ञात के साथ रैखिक समीकरण, (3) अपनी दूसरी और उच्च शक्तियों में एक, दो या अधिक अज्ञात के साथ समीकरण, और (4) अज्ञात के उत्पादों को शामिल करने वाले समीकरण . चूँकि तृतीय वर्ग के समीकरण को हल करने की विधि मध्य पद के उन्मूलन के सिद्धांत पर आधारित है, इसलिए उस वर्ग को मध्यमाहारन (मध्यम से, "मध्य", अहारण "उन्मूलन", इसलिए अर्थ "उन्मूलन" कहा जाता है। मध्य अवधि का")। अन्य वर्गों के लिए, ब्रह्मगुप्त द्वारा दिए गए पुराने नामों को बरकरार रखा गया है। वर्गीकरण की इस पद्धति का अनुसरण बाद के लेखकों ने किया है।

भास्कर II तीसरे वर्ग में दो प्रकारों को अलग करता है, viz" (i) अपनी दूसरी और उच्च शक्तियों में एक अज्ञात में समीकरण और (ii) दूसरी और उच्च शक्तियों में दो या दो से अधिक अज्ञात वाले समीकरण।' कृष्ण के अनुसार (1580) समीकरण मुख्य रूप से दो वर्गों के होते हैं: (1) एक अज्ञात में समीकरण और (जेड) दो या दो से अधिक अज्ञात में समीकरण। वर्ग (1) में फिर से दो उपवर्ग होते हैं: (i) सरल समीकरण और ( ii) द्विघात और उच्च समीकरण। वर्ग (2) में तीन उपवर्ग हैं: (i) एक साथ रैखिक समीकरण, (ii) अज्ञात की दूसरी और उच्च शक्तियों वाले समीकरण, और (iii) अज्ञात के उत्पादों को शामिल करने वाले समीकरण। फिर वह देखता है कि इन पांच वर्गों को कक्षा (1) और (2) के दूसरे उपवर्गों को मध्यमहाहारन के रूप में एक वर्ग में शामिल करके चार तक कम किया जा सकता है।

एक अज्ञात में रैखिक समीकरण

प्रारंभिक समाधान:

जैसा कि पहले ही कहा गया है, एक अज्ञात में एक रैखिक समीकरण का ज्यामितीय समाधान सुलबा में पाया जाता है, जिसमें से सबसे पहला 800 ईसा पूर्व के बाद का नहीं है। स्थानांग-सूत्र (सी। 300 ईसा पूर्व) में इसके नाम (यवत-तवत) से एक रैखिक समीकरण का संदर्भ है जो समाधान की विधि का सूचक है! उस समय पीछा किया। हालांकि, हमारे पास इसके बारे में और कोई सबूत नहीं है। सरल बीजगणितीय समीकरणों और उनके समाधान के लिए एक विधि से संबंधित समस्याओं के निस्संदेह मूल्य का सबसे पहला हिंदू रिकॉर्ड बख्शाली ग्रंथ में मिलता है, जो शायद ईसाई युग की शुरुआत के बारे में लिखा गया था।

एक समस्या यह है कि "पहले को दी गई राशि ज्ञात नहीं है। दूसरी को पहले की तुलना में दोगुना दिया जाता है, तीसरे को दूसरे से तीन गुना और चौथे को तीसरे से चार गुना अधिक दिया जाता है। वितरित की गई कुल राशि है 132. पहले की राशि क्या है?"

यदि x पहले को दी गई राशि हो, तो समस्या के अनुसार,

x + 2X + 6x + 24X = 132।

असत्य स्थिति का नियम:

इस समीकरण का हल इस प्रकार दिया गया है:

"'किसी भी वांछित मात्रा को रिक्त स्थान पर रखना'; कोई भी वांछित मात्रा 1 है; 'फिर श्रृंखला का निर्माण करें।

1 2 2 3 6 4
1 1 1 1 1 1

'गुणा किया हुआ'

1 2 6 24