Difference between revisions of "धारिता-विद्युत-दाब प्रोफाइलन"

From alpha
Jump to navigation Jump to search
(Created page with "कैपेसिटेंस-वोल्टेज प्रोफाइलिंग (या सी-वी प्रोफाइलिंग, कभी-कभी सी...")
 
Line 1: Line 1:
कैपेसिटेंस-[[वोल्टेज]] प्रोफाइलिंग (या सी-वी प्रोफाइलिंग, कभी-कभी सीवी प्रोफाइलिंग) [[ अर्धचालक ]] सामग्री और उपकरणों को चिह्नित करने की एक तकनीक है। लागू वोल्टेज विविध है, और [[समाई]] को मापा जाता है और वोल्टेज के कार्य के रूप में प्लॉट किया जाता है। यह तकनीक [[ धातु ]]-सेमीकंडक्टर जंक्शन ([[शोट्की बाधा]]) या पी-एन जंक्शन का उपयोग करती है<ref>J. Hilibrand and R.D. Gold, "Determination of the Impurity Distribution in Junction Diodes From Capacitance-Voltage Measurements", RCA Review, vol. 21, p. 245, June 1960</ref> या एक एमओएसएफईटी एक कमी क्षेत्र बनाने के लिए, एक ऐसा क्षेत्र जो [[इलेक्ट्रॉन]]ों और [[इलेक्ट्रॉन छेद]] का संचालन करने के लिए खाली है, लेकिन इसमें आयनित दाताओं और वाहक पीढ़ी और पुनर्संयोजन # पीढ़ी और पुनर्संयोजन प्रक्रियाएं या जाल शामिल हो सकते हैं। इसके आयनित आवेशों के साथ अवक्षय क्षेत्र एक संधारित्र की तरह व्यवहार करता है। जंक्शन पर लगाए गए वोल्टेज को बदलकर घटती चौड़ाई को बदलना संभव है। लागू वोल्टेज पर [[कमी की चौड़ाई]] की निर्भरता सेमीकंडक्टर की आंतरिक विशेषताओं, जैसे इसकी डोपिंग प्रोफ़ाइल और वाहक पीढ़ी और पुनर्संयोजन # पीढ़ी और पुनर्संयोजन प्रक्रिया घनत्व के बारे में जानकारी प्रदान करती है।<ref name=Diebold>
'''धारिता-विद्युत-दाब''' '''प्रोफाइलन''' (या '''C–V''' '''प्रोफाइलन''', कभी-कभी '''CV प्रोफाइलन''') [[ अर्धचालक ]] पदार्थ और उपकरणों को चिह्नित करने की एक तकनीक है। प्रयुक्त विद्युत-दाब  विविध प्रकार का होता है, और [[समाई|धारिता]] को मापा जाता है और विद्युत-दाब के कार्य के रूप में आलेखित किया जाता है। यह तकनीक [[ धातु ]]-अर्धचालक संयोजन ([[शोट्की बाधा]]) या p–n संयोजन<ref>J. Hilibrand and R.D. Gold, "Determination of the Impurity Distribution in Junction Diodes From Capacitance-Voltage Measurements", RCA Review, vol. 21, p. 245, June 1960</ref> या एक धातु आक्साइड अर्धचालक क्षेत्र-प्रभावक ट्रांजिस्टर का उपयोग एक अवक्षय क्षेत्र बनाने के लिए करते  है, एक ऐसा क्षेत्र जो इलेक्ट्रॉनोंऔर [[इलेक्ट्रॉन छेद|छिद्रों]] का संचालन करने के लिए रिक्त है, लेकिन इसमें आयनित दाताओं और विद्युत रूप से सक्रिय दोष या जाल हो सकते हैं। इसके आयनित आवेशों के साथ अवक्षय क्षेत्र एक संधारित्र की तरह व्यवहार करता है। संयोजन पर लगाए गए विद्युत-दाब को बदलकर अवक्षय आयाम को बदलना संभव है। प्रयुक्त विद्युत-दाब पर [[कमी की चौड़ाई|अवक्षय आयाम]] की निर्भरता अर्धचालक की आंतरिक विशेषताओं, जैसे इसकी अपमिश्रण रूपरेखा और विद्युत सक्रिय दोष घनत्व के बारे में जानकारी प्रदान करती है।<ref name=Diebold>


{{cite book
{{cite book
Line 9: Line 9:
|pages=59–60
|pages=59–60
|url=https://books.google.com/books?id=9B7e7rNnZPcC&q=metrology+%22capacitance+voltage+%22&pg=PA59}}
|url=https://books.google.com/books?id=9B7e7rNnZPcC&q=metrology+%22capacitance+voltage+%22&pg=PA59}}
</ref><sup>,</sup> <ref name=Brews_Nicollian>
</ref><ref name=Brews_Nicollian>
{{cite book
{{cite book
|author=E.H. Nicollian, J.R. Brews
|author=E.H. Nicollian, J.R. Brews
Line 27: Line 27:
|url=https://books.google.com/books?id=MfM3VtXhpRwC&q=conductance+method&pg=PA159
|url=https://books.google.com/books?id=MfM3VtXhpRwC&q=conductance+method&pg=PA159
|page=159}}
|page=159}}
</ref>), या एक गहरे-स्तर के क्षणिक स्पेक्ट्रोस्कोपी | बड़े-सिग्नल क्षणिक वोल्टेज का उपयोग करना।<ref name=Cristoloveanu2>
</ref> मापन दिष्ट धारा पर किया जा सकता है, या दिष्ट धारा और एक छोटे दोनों का उपयोग किया जा सकता है। सिग्नल प्रत्यावर्ती धारा सिग्नल चालन विधि<ref name=Cristoloveanu2>
{{cite book
{{cite book
|author=Sheng S. Li and Sorin Cristoloveanu
|author=Sheng S. Li and Sorin Cristoloveanu
Line 36: Line 36:
|pages=Chapter 6, p. 163
|pages=Chapter 6, p. 163
|url=https://books.google.com/books?id=AAr0_xwg9SgC&q=DLTS&pg=PA163
|url=https://books.google.com/books?id=AAr0_xwg9SgC&q=DLTS&pg=PA163
|no-pp=true}}</ref>
|no-pp=true}}</ref> या एक बड़े-सिग्नल क्षणिक विद्युत-दाब का उपयोग करना।




== आवेदन ==
== अनुप्रयोग EDIT ==
कई शोधकर्ता विशेष रूप से MOSCAP और MOSFET संरचनाओं में सेमीकंडक्टर मापदंडों को निर्धारित करने के लिए कैपेसिटेंस-वोल्टेज (C-V) परीक्षण का उपयोग करते हैं। हालांकि, सी-वी माप का व्यापक रूप से अन्य प्रकार के अर्धचालक उपकरणों और प्रौद्योगिकियों को चित्रित करने के लिए भी उपयोग किया जाता है, जिसमें द्विध्रुवी जंक्शन ट्रांजिस्टर, जेएफईटी, III-V मिश्रित उपकरण, फोटोवोल्टिक सेल, एमईएमएस उपकरण, कार्बनिक पतली-फिल्म ट्रांजिस्टर (टीएफटी) डिस्प्ले, फोटोडिओड शामिल हैं। और कार्बन नैनोट्यूब (सीएनटी)।
कई शोधकर्ता विशेष रूप से MOSCAP और MOSFET संरचनाओं में अर्धचालक मापदंडों को निर्धारित करने के लिए कैपेसिटेंस-विद्युत-दाब (C-V) परीक्षण का उपयोग करते हैं। हालांकि, सी-वी माप का व्यापक रूप से अन्य प्रकार के अर्धचालक उपकरणों और प्रौद्योगिकियों को चित्रित करने के लिए भी उपयोग किया जाता है, जिसमें द्विध्रुवी संयोजन ट्रांजिस्टर, जेएफईटी, III-V मिश्रित उपकरण, फोटोवोल्टिक सेल, एमईएमएस उपकरण, कार्बनिक पतली-फिल्म ट्रांजिस्टर (टीएफटी) डिस्प्ले, फोटोडिओड शामिल हैं। और कार्बन नैनोट्यूब (सीएनटी)।


इन मापों की मौलिक प्रकृति उन्हें अनुसंधान कार्यों और विषयों की एक विस्तृत श्रृंखला के लिए लागू करती है। उदाहरण के लिए, शोधकर्ता उन्हें नई प्रक्रियाओं, सामग्रियों, उपकरणों और सर्किटों का मूल्यांकन करने के लिए विश्वविद्यालय और सेमीकंडक्टर निर्माताओं की प्रयोगशालाओं में उपयोग करते हैं। ये माप उत्पाद और उपज बढ़ाने वाले इंजीनियरों के लिए बेहद मूल्यवान हैं जो प्रक्रियाओं और डिवाइस के प्रदर्शन में सुधार के लिए जिम्मेदार हैं। विश्वसनीयता इंजीनियर इन मापों का उपयोग उन सामग्रियों के आपूर्तिकर्ताओं को योग्य बनाने के लिए भी करते हैं जिनका वे उपयोग करते हैं, प्रक्रिया मापदंडों की निगरानी करने के लिए, और विफलता तंत्र का विश्लेषण करने के लिए।
इन मापों की मौलिक प्रकृति उन्हें अनुसंधान कार्यों और विषयों की एक विस्तृत श्रृंखला के लिए प्रयुक्त करती है। उदाहरण के लिए, शोधकर्ता उन्हें नई प्रक्रियाओं, सामग्रियों, उपकरणों और सर्किटों का मूल्यांकन करने के लिए विश्वविद्यालय और अर्धचालक निर्माताओं की प्रयोगशालाओं में उपयोग करते हैं। ये माप उत्पाद और उपज बढ़ाने वाले इंजीनियरों के लिए बेहद मूल्यवान हैं जो प्रक्रियाओं और डिवाइस के प्रदर्शन में सुधार के लिए जिम्मेदार हैं। विश्वसनीयता इंजीनियर इन मापों का उपयोग उन सामग्रियों के आपूर्तिकर्ताओं को योग्य बनाने के लिए भी करते हैं जिनका वे उपयोग करते हैं, प्रक्रिया मापदंडों की निगरानी करने के लिए, और विफलता तंत्र का विश्लेषण करने के लिए।


सेमीकंडक्टर डिवाइस और सामग्री पैरामीटर की एक भीड़ सी-वी माप से उचित पद्धति, उपकरण और सॉफ्टवेयर के साथ प्राप्त की जा सकती है। यह जानकारी अर्धचालक उत्पादन श्रृंखला में उपयोग की जाती है, और औसत डोपिंग एकाग्रता, डोपिंग प्रोफाइल और वाहक जीवन काल जैसे पैरामीटर सहित एपिटैक्सियल रूप से विकसित क्रिस्टल का मूल्यांकन करने के साथ शुरू होता है।
अर्धचालक डिवाइस और पदार्थ पैरामीटर की एक भीड़ सी-वी माप से उचित पद्धति, उपकरण और सॉफ्टवेयर के साथ प्राप्त की जा सकती है। यह जानकारी अर्धचालक उत्पादन श्रृंखला में उपयोग की जाती है, और औसत डोपिंग एकाग्रता, डोपिंग प्रोफाइल और वाहक जीवन काल जैसे पैरामीटर सहित एपिटैक्सियल रूप से विकसित क्रिस्टल का मूल्यांकन करने के साथ शुरू होता है।


सी-वी माप ऑक्साइड की मोटाई, ऑक्साइड चार्ज, मोबाइल आयनों से संदूषण और वेफर प्रक्रियाओं में इंटरफ़ेस ट्रैप घनत्व प्रकट कर सकते हैं। विभिन्न ऑक्साइड मोटाई के साथ बल्क MOSFET के लिए [[android]] पर उत्पन्न A C-V प्रोफ़ाइल। ध्यान दें कि लाल वक्र कम आवृत्ति को इंगित करता है जबकि नीला वक्र उच्च आवृत्ति C-V प्रोफ़ाइल को दिखाता है। विभिन्न ऑक्साइड मोटाई के साथ दहलीज वोल्टेज में बदलाव पर विशेष ध्यान दें।
सी-वी माप ऑक्साइड की मोटाई, ऑक्साइड चार्ज, मोबाइल आयनों से संदूषण और वेफर प्रक्रियाओं में इंटरफ़ेस ट्रैप घनत्व प्रकट कर सकते हैं। विभिन्न ऑक्साइड मोटाई के साथ बल्क MOSFET के लिए [[android]] पर उत्पन्न A C-V प्रोफ़ाइल। ध्यान दें कि लाल वक्र कम आवृत्ति को इंगित करता है जबकि नीला वक्र उच्च आवृत्ति C-V प्रोफ़ाइल को दिखाता है। विभिन्न ऑक्साइड मोटाई के साथ दहलीज विद्युत-दाब में बदलाव पर विशेष ध्यान दें।


लिथोग्राफी, नक़्क़ाशी, सफाई, ढांकता हुआ और पॉलीसिलिकॉन जमाव, और धातुकरण सहित अन्य प्रक्रिया चरणों के प्रदर्शन के बाद ये माप महत्वपूर्ण बने हुए हैं। एक बार उपकरणों के पूरी तरह से गढ़े जाने के बाद, सी-वी प्रोफाइलिंग का उपयोग अक्सर थ्रेशोल्ड वोल्टेज और अन्य मापदंडों को विश्वसनीयता और बुनियादी उपकरण परीक्षण के दौरान और मॉडल डिवाइस के प्रदर्शन के लिए किया जाता है।
लिथोग्राफी, नक़्क़ाशी, सफाई, ढांकता हुआ और पॉलीसिलिकॉन जमाव, और धातुकरण सहित अन्य प्रक्रिया चरणों के प्रदर्शन के बाद ये माप महत्वपूर्ण बने हुए हैं। एक बार उपकरणों के पूरी तरह से गढ़े जाने के बाद, सी-वी प्रोफाइलन का उपयोग अक्सर थ्रेशोल्ड विद्युत-दाब और अन्य मापदंडों को विश्वसनीयता और बुनियादी उपकरण परीक्षण के दौरान और मॉडल डिवाइस के प्रदर्शन के लिए किया जाता है।


इलेक्ट्रॉनिक इंस्ट्रूमेंटेशन के कैपेसिटेंस-वोल्टेज मीटर का उपयोग करके सी-वी मापन किया जाता है। प्राप्त सी-वी ग्राफ द्वारा अर्धचालक उपकरणों के डोपिंग प्रोफाइल का विश्लेषण करने के लिए उनका उपयोग किया जाता है।
इलेक्ट्रॉनिक इंस्ट्रूमेंटेशन के कैपेसिटेंस-विद्युत-दाब मीटर का उपयोग करके सी-वी मापन किया जाता है। प्राप्त सी-वी ग्राफ द्वारा अर्धचालक उपकरणों के डोपिंग प्रोफाइल का विश्लेषण करने के लिए उनका उपयोग किया जाता है।


[[File:Illustration of C-V measurement.gif|thumb|300px|right|विभिन्न ऑक्साइड मोटाई वाले बल्क MOSFET के लिए C-V प्रोफ़ाइल।]]
[[File:Illustration of C-V measurement.gif|thumb|300px|right|विभिन्न ऑक्साइड मोटाई वाले बल्क MOSFET के लिए C-V प्रोफ़ाइल।]]


== सी-वी धातु-ऑक्साइड-अर्धचालक संरचना की विशेषताएं ==
== सी-वी धातु-ऑक्साइड-अर्धचालक संरचना की विशेषताएं ==
गेट ऑक्साइड के माध्यम से [[ चैनल (अर्धचालक) ]] में संभावित अवरोध की ऊंचाई को नियंत्रित करते हुए एक धातु-ऑक्साइड-सेमीकंडक्टर संरचना MOSFET का महत्वपूर्ण हिस्सा है।
गेट ऑक्साइड के माध्यम से [[ चैनल (अर्धचालक) ]] में संभावित अवरोध की ऊंचाई को नियंत्रित करते हुए एक धातु-ऑक्साइड-अर्धचालक संरचना MOSFET का महत्वपूर्ण हिस्सा है।


एक एन-चैनल एमओएसएफईटी के संचालन को तीन क्षेत्रों में विभाजित किया जा सकता है, जो नीचे दिखाया गया है और सही आंकड़े के अनुरूप है।
एक एन-चैनल धातु आक्साइड अर्धचालक क्षेत्र-प्रभावक ट्रांजिस्टर के संचालन को तीन क्षेत्रों में विभाजित किया जा सकता है, जो नीचे दिखाया गया है और सही आंकड़े के अनुरूप है।


=== कमी ===
=== कमी ===
जब धातु पर एक छोटा सकारात्मक पूर्वाग्रह वोल्टेज लगाया जाता है, तो [[संयोजी बंध]] एज [[फर्मी स्तर]] से दूर चला जाता है, और शरीर से छेद गेट से दूर चला जाता है, जिसके परिणामस्वरूप कम वाहक घनत्व होता है, इसलिए समाई कम होती है (द दाईं ओर आकृति के बीच में घाटी)।
जब धातु पर एक छोटा सकारात्मक पूर्वाग्रह विद्युत-दाब लगाया जाता है, तो [[संयोजी बंध]] एज [[फर्मी स्तर]] से दूर चला जाता है, और शरीर से छेद गेट से दूर चला जाता है, जिसके परिणामस्वरूप कम वाहक घनत्व होता है, इसलिए धारिता कम होती है (द दाईं ओर आकृति के बीच में घाटी)।


=== उलटा ===
=== उलटा ===
सेमीकंडक्टर सतह के पास अभी भी बड़े गेट बायस पर कंडक्शन बैंड एज को फर्मी स्तर के करीब लाया जाता है, सेमीकंडक्टर और ऑक्साइड के बीच इंटरफेस में उलटा परत या एन-चैनल में इलेक्ट्रॉनों के साथ सतह को पॉप्युलेट करता है। इसका परिणाम कैपेसिटेंस में वृद्धि के रूप में होता है, जैसा कि सही चित्र के दाहिने हिस्से में दिखाया गया है।
अर्धचालक सतह के पास अभी भी बड़े गेट बायस पर कंडक्शन बैंड एज को फर्मी स्तर के करीब लाया जाता है, अर्धचालक और ऑक्साइड के बीच इंटरफेस में उलटा परत या एन-चैनल में इलेक्ट्रॉनों के साथ सतह को पॉप्युलेट करता है। इसका परिणाम कैपेसिटेंस में वृद्धि के रूप में होता है, जैसा कि सही चित्र के दाहिने हिस्से में दिखाया गया है।


=== संचय ===
=== संचय ===
जब एक नकारात्मक गेट-सोर्स वोल्टेज (पॉजिटिव सोर्स-गेट) लगाया जाता है, तो यह एन क्षेत्र की सतह पर एक पी-चैनल बनाता है, जो एन-चैनल मामले के अनुरूप होता है, लेकिन आवेशों और वोल्टेज के विपरीत ध्रुवों के साथ। छेद के घनत्व में वृद्धि समाई में वृद्धि से मेल खाती है, जिसे दाएं चित्र के बाएं भाग में दिखाया गया है।
जब एक नकारात्मक गेट-सोर्स विद्युत-दाब (पॉजिटिव सोर्स-गेट) लगाया जाता है, तो यह एन क्षेत्र की सतह पर एक पी-चैनल बनाता है, जो एन-चैनल मामले के अनुरूप होता है, लेकिन आवेशों और विद्युत-दाब के विपरीत ध्रुवों के साथ। छेद के घनत्व में वृद्धि धारिता में वृद्धि से मेल खाती है, जिसे दाएं चित्र के बाएं भाग में दिखाया गया है।


== यह भी देखें ==
== यह भी देखें ==
* वर्तमान-वोल्टेज विशेषता
* वर्तमान-विद्युत-दाब विशेषता
*रिक्तीकरण क्षेत्र
*रिक्तीकरण क्षेत्र
* कमी चौड़ाई
* कमी आयाम
* [[ड्राइव लेवल कैपेसिटेंस प्रोफाइलिंग]]
* [[ड्राइव लेवल कैपेसिटेंस प्रोफाइलिंग|ड्राइव लेवल कैपेसिटेंस प्रोफाइलन]]
* गहरे स्तर की क्षणिक स्पेक्ट्रोस्कोपी
* गहरे स्तर की क्षणिक स्पेक्ट्रोस्कोपी
* धातु-ऑक्साइड-अर्धचालक संरचना
* धातु-ऑक्साइड-अर्धचालक संरचना

Revision as of 16:12, 18 June 2023

धारिता-विद्युत-दाब प्रोफाइलन (या C–V प्रोफाइलन, कभी-कभी CV प्रोफाइलन) अर्धचालक पदार्थ और उपकरणों को चिह्नित करने की एक तकनीक है। प्रयुक्त विद्युत-दाब विविध प्रकार का होता है, और धारिता को मापा जाता है और विद्युत-दाब के कार्य के रूप में आलेखित किया जाता है। यह तकनीक धातु -अर्धचालक संयोजन (शोट्की बाधा) या p–n संयोजन[1] या एक धातु आक्साइड अर्धचालक क्षेत्र-प्रभावक ट्रांजिस्टर का उपयोग एक अवक्षय क्षेत्र बनाने के लिए करते है, एक ऐसा क्षेत्र जो इलेक्ट्रॉनोंऔर छिद्रों का संचालन करने के लिए रिक्त है, लेकिन इसमें आयनित दाताओं और विद्युत रूप से सक्रिय दोष या जाल हो सकते हैं। इसके आयनित आवेशों के साथ अवक्षय क्षेत्र एक संधारित्र की तरह व्यवहार करता है। संयोजन पर लगाए गए विद्युत-दाब को बदलकर अवक्षय आयाम को बदलना संभव है। प्रयुक्त विद्युत-दाब पर अवक्षय आयाम की निर्भरता अर्धचालक की आंतरिक विशेषताओं, जैसे इसकी अपमिश्रण रूपरेखा और विद्युत सक्रिय दोष घनत्व के बारे में जानकारी प्रदान करती है।[2]Cite error: Closing </ref> missing for <ref> tag मापन दिष्ट धारा पर किया जा सकता है, या दिष्ट धारा और एक छोटे दोनों का उपयोग किया जा सकता है। सिग्नल प्रत्यावर्ती धारा सिग्नल चालन विधि[3] या एक बड़े-सिग्नल क्षणिक विद्युत-दाब का उपयोग करना।


अनुप्रयोग EDIT

कई शोधकर्ता विशेष रूप से MOSCAP और MOSFET संरचनाओं में अर्धचालक मापदंडों को निर्धारित करने के लिए कैपेसिटेंस-विद्युत-दाब (C-V) परीक्षण का उपयोग करते हैं। हालांकि, सी-वी माप का व्यापक रूप से अन्य प्रकार के अर्धचालक उपकरणों और प्रौद्योगिकियों को चित्रित करने के लिए भी उपयोग किया जाता है, जिसमें द्विध्रुवी संयोजन ट्रांजिस्टर, जेएफईटी, III-V मिश्रित उपकरण, फोटोवोल्टिक सेल, एमईएमएस उपकरण, कार्बनिक पतली-फिल्म ट्रांजिस्टर (टीएफटी) डिस्प्ले, फोटोडिओड शामिल हैं। और कार्बन नैनोट्यूब (सीएनटी)।

इन मापों की मौलिक प्रकृति उन्हें अनुसंधान कार्यों और विषयों की एक विस्तृत श्रृंखला के लिए प्रयुक्त करती है। उदाहरण के लिए, शोधकर्ता उन्हें नई प्रक्रियाओं, सामग्रियों, उपकरणों और सर्किटों का मूल्यांकन करने के लिए विश्वविद्यालय और अर्धचालक निर्माताओं की प्रयोगशालाओं में उपयोग करते हैं। ये माप उत्पाद और उपज बढ़ाने वाले इंजीनियरों के लिए बेहद मूल्यवान हैं जो प्रक्रियाओं और डिवाइस के प्रदर्शन में सुधार के लिए जिम्मेदार हैं। विश्वसनीयता इंजीनियर इन मापों का उपयोग उन सामग्रियों के आपूर्तिकर्ताओं को योग्य बनाने के लिए भी करते हैं जिनका वे उपयोग करते हैं, प्रक्रिया मापदंडों की निगरानी करने के लिए, और विफलता तंत्र का विश्लेषण करने के लिए।

अर्धचालक डिवाइस और पदार्थ पैरामीटर की एक भीड़ सी-वी माप से उचित पद्धति, उपकरण और सॉफ्टवेयर के साथ प्राप्त की जा सकती है। यह जानकारी अर्धचालक उत्पादन श्रृंखला में उपयोग की जाती है, और औसत डोपिंग एकाग्रता, डोपिंग प्रोफाइल और वाहक जीवन काल जैसे पैरामीटर सहित एपिटैक्सियल रूप से विकसित क्रिस्टल का मूल्यांकन करने के साथ शुरू होता है।

सी-वी माप ऑक्साइड की मोटाई, ऑक्साइड चार्ज, मोबाइल आयनों से संदूषण और वेफर प्रक्रियाओं में इंटरफ़ेस ट्रैप घनत्व प्रकट कर सकते हैं। विभिन्न ऑक्साइड मोटाई के साथ बल्क MOSFET के लिए android पर उत्पन्न A C-V प्रोफ़ाइल। ध्यान दें कि लाल वक्र कम आवृत्ति को इंगित करता है जबकि नीला वक्र उच्च आवृत्ति C-V प्रोफ़ाइल को दिखाता है। विभिन्न ऑक्साइड मोटाई के साथ दहलीज विद्युत-दाब में बदलाव पर विशेष ध्यान दें।

लिथोग्राफी, नक़्क़ाशी, सफाई, ढांकता हुआ और पॉलीसिलिकॉन जमाव, और धातुकरण सहित अन्य प्रक्रिया चरणों के प्रदर्शन के बाद ये माप महत्वपूर्ण बने हुए हैं। एक बार उपकरणों के पूरी तरह से गढ़े जाने के बाद, सी-वी प्रोफाइलन का उपयोग अक्सर थ्रेशोल्ड विद्युत-दाब और अन्य मापदंडों को विश्वसनीयता और बुनियादी उपकरण परीक्षण के दौरान और मॉडल डिवाइस के प्रदर्शन के लिए किया जाता है।

इलेक्ट्रॉनिक इंस्ट्रूमेंटेशन के कैपेसिटेंस-विद्युत-दाब मीटर का उपयोग करके सी-वी मापन किया जाता है। प्राप्त सी-वी ग्राफ द्वारा अर्धचालक उपकरणों के डोपिंग प्रोफाइल का विश्लेषण करने के लिए उनका उपयोग किया जाता है।

विभिन्न ऑक्साइड मोटाई वाले बल्क MOSFET के लिए C-V प्रोफ़ाइल।

सी-वी धातु-ऑक्साइड-अर्धचालक संरचना की विशेषताएं

गेट ऑक्साइड के माध्यम से चैनल (अर्धचालक) में संभावित अवरोध की ऊंचाई को नियंत्रित करते हुए एक धातु-ऑक्साइड-अर्धचालक संरचना MOSFET का महत्वपूर्ण हिस्सा है।

एक एन-चैनल धातु आक्साइड अर्धचालक क्षेत्र-प्रभावक ट्रांजिस्टर के संचालन को तीन क्षेत्रों में विभाजित किया जा सकता है, जो नीचे दिखाया गया है और सही आंकड़े के अनुरूप है।

कमी

जब धातु पर एक छोटा सकारात्मक पूर्वाग्रह विद्युत-दाब लगाया जाता है, तो संयोजी बंध एज फर्मी स्तर से दूर चला जाता है, और शरीर से छेद गेट से दूर चला जाता है, जिसके परिणामस्वरूप कम वाहक घनत्व होता है, इसलिए धारिता कम होती है (द दाईं ओर आकृति के बीच में घाटी)।

उलटा

अर्धचालक सतह के पास अभी भी बड़े गेट बायस पर कंडक्शन बैंड एज को फर्मी स्तर के करीब लाया जाता है, अर्धचालक और ऑक्साइड के बीच इंटरफेस में उलटा परत या एन-चैनल में इलेक्ट्रॉनों के साथ सतह को पॉप्युलेट करता है। इसका परिणाम कैपेसिटेंस में वृद्धि के रूप में होता है, जैसा कि सही चित्र के दाहिने हिस्से में दिखाया गया है।

संचय

जब एक नकारात्मक गेट-सोर्स विद्युत-दाब (पॉजिटिव सोर्स-गेट) लगाया जाता है, तो यह एन क्षेत्र की सतह पर एक पी-चैनल बनाता है, जो एन-चैनल मामले के अनुरूप होता है, लेकिन आवेशों और विद्युत-दाब के विपरीत ध्रुवों के साथ। छेद के घनत्व में वृद्धि धारिता में वृद्धि से मेल खाती है, जिसे दाएं चित्र के बाएं भाग में दिखाया गया है।

यह भी देखें

संदर्भ

  1. J. Hilibrand and R.D. Gold, "Determination of the Impurity Distribution in Junction Diodes From Capacitance-Voltage Measurements", RCA Review, vol. 21, p. 245, June 1960
  2. Alain C. Diebold, ed. (2001). Handbook of Silicon Semiconductor Metrology. CRC Press. pp. 59–60. ISBN 0-8247-0506-8.
  3. Sheng S. Li and Sorin Cristoloveanu (1995). Electrical Characterization of Silicon-On-Insulator Materials and Devices. Springer. Chapter 6, p. 163. ISBN 0-7923-9548-4.


बाहरी संबंध