Difference between revisions of "The Modulus and the Conjugate of a Complex Number"

From alpha
Jump to navigation Jump to search
Line 18: Line 18:
<math>=\frac{(48-36i+20i-15i^2)}{(16-9i^2)}</math><math>=\frac{(48-16i-15(-1))}{(16-9(-1))}</math><math>=\frac{63-16i}{25}</math><math>=\frac{63}{25}-\frac{16i}{25}</math>
<math>=\frac{(48-36i+20i-15i^2)}{(16-9i^2)}</math><math>=\frac{(48-16i-15(-1))}{(16-9(-1))}</math><math>=\frac{63-16i}{25}</math><math>=\frac{63}{25}-\frac{16i}{25}</math>


Answer: The conjugate of <math>\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}</math><math>=\frac{63}{25}+\frac{16i}{25}</math>
'''Answer''': The conjugate of <math>\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}</math><math>=\frac{63}{25}+\frac{16i}{25}</math>


== Modulus of a Complex Number ==
== Modulus of a Complex Number ==
[[File:Modulus-complex number.jpg|alt=Modulus of a complex number|thumb|Fig 2 - Modulus of a complex number]]
[[File:Modulus-complex number.jpg|alt=Modulus of a complex number|thumb|Fig 2 - Modulus of a complex number]]

Revision as of 13:19, 11 November 2023

The modulus of a complex number gives the distance of the complex number from the origin in the Argand plane, whereas the conjugate of a complex number gives the reflection of the complex number about the real axis in the Argand plane.

Conjugate of a Complex Number

Conjugate of a complex number
Fig 1 - Conjugate of a complex number

The representation of a complex number and its conjugate in the Argand plane are, respectively , the points and

Geometrically , the point is the mirror image of the point on the real axis (Fig 1)

Example: Find the conjugate of

Answer: The conjugate of

Modulus of a Complex Number

Modulus of a complex number
Fig 2 - Modulus of a complex number