Difference between revisions of "Properties of Determinants"

From alpha
Jump to navigation Jump to search
Line 23: Line 23:


<math>\bigtriangleup=  a_1b_2c_3-a_1b_3c_2 - a_2b_1c_3+a_2b_3c_1+a_3 b_1c_2-a_3b_2c_1 </math>
<math>\bigtriangleup=  a_1b_2c_3-a_1b_3c_2 - a_2b_1c_3+a_2b_3c_1+a_3 b_1c_2-a_3b_2c_1 </math>


<math>\bigtriangleup_1=  a_1  \begin{vmatrix}  b_2 & c_2 \\  b_3 & c_3 \end{vmatrix} - b_1  \begin{vmatrix} a_2 & c_2 \\  a_3 & c_3 \end{vmatrix} + c_1  \begin{vmatrix}  a_2 & b_2 \\  a_3 & b_3 \end{vmatrix}</math>
<math>\bigtriangleup_1=  a_1  \begin{vmatrix}  b_2 & c_2 \\  b_3 & c_3 \end{vmatrix} - b_1  \begin{vmatrix} a_2 & c_2 \\  a_3 & c_3 \end{vmatrix} + c_1  \begin{vmatrix}  a_2 & b_2 \\  a_3 & b_3 \end{vmatrix}</math>
Line 93: Line 91:


=== Sum Property ===
=== Sum Property ===
If some or all elements of a row or column of a determinant are expressed as sum of two (or more) terms, then the determinant can be expressed as sum of two (or more) determinants.
<math>\begin{vmatrix} a_1+d_1 & a_2+d_2 & a_3+d_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix}=\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix} + \begin{vmatrix} d_1 & d_2 & d_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix}</math>
'''Verification'''
L.H.S =<math>\begin{vmatrix} a_1+d_1 & a_2+d_2 & a_3+d_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix}</math>
<math>=(a_1+d_1)(b_2c_3-b_3c_2)- (a_2+d_2) (b_1c_3-b_3c_1)+(a_3+d_3)(b_1c_2-b_2c_1)  </math>
<math>=a_1(b_2c_3-b_3c_2)-a_2 (b_1c_3-b_3c_1)+a_3(b_1c_2-b_2c_1) +
d_1(b_2c_3-b_3c_2)-d_2 (b_1c_3-b_3c_1)+d_3(b_1c_2-b_2c_1) </math>
<math>=\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix} + \begin{vmatrix} d_1 & d_2 & d_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix}</math>=R.H.S


=== Property of Invariance ===
=== Property of Invariance ===


=== Triangular Property ===
=== Triangular Property ===

Revision as of 08:19, 29 January 2024

Properties of determinants are required to find the value of the determinant with least calculations. The properties of determinants are based on the elements, the row, and column operations, and it helps to easily find the value of the determinant.

Properties of Determinants

Interchange Property

The value of a determinant remains unchanged if the rows and the columns of a determinant are interchanged.

Before the rows and the columns are interchanged

After the rows and the columns are interchanged

Verification

Hence

If the rows and columns of the matrix are interchanged, then the transpose of the matrix is obtained and the determinant value and the determinant of the transpose are equal.

Sign Property

If any two rows or any two columns are interchanged, the sign of the value of the determinant changes.

After changing any two rows

Verification


Zero Property

If any two rows (or columns) of a determinant are identical (all corresponding elements are same), then value of determinant is zero.

Verification

Multiplication Property

If each element of a row (or a column) of a determinant is multiplied by a constant k, then its value gets multiplied by k

Verification

Sum Property

If some or all elements of a row or column of a determinant are expressed as sum of two (or more) terms, then the determinant can be expressed as sum of two (or more) determinants.

Verification

L.H.S =

=R.H.S

Property of Invariance

Triangular Property