एड़ी विद्युत प्रवाह

From alpha
Jump to navigation Jump to search

विद्युत चुंबकत्व में, एड़ी धाराएं (जिसे फौकॉल्ट की धाराएं भी कहा जाता है) कंडक्टर में फैराडे के प्रेरण के कानून के अनुसार या चुंबकीय क्षेत्र में कंडक्टर के सापेक्ष गति के अनुसार कंडक्टर में बदलते चुंबकीय क्षेत्र द्वारा प्रेरित विद्युत प्रवाह के लूप हैं। चुंबकीय क्षेत्र के लंबवत विमानों में कंडक्टर के भीतर बंद लूप में एड़ी धाराएं प्रवाहित होती हैं। वे एक एसी इलेक्ट्रोमैग्नेट या ट्रांसफॉर्मर द्वारा बनाए गए समय-भिन्न चुंबकीय क्षेत्र द्वारा आस-पास के स्थिर कंडक्टरों के भीतर प्रेरित हो सकते हैं, उदाहरण के लिए, या चुंबक और पास के कंडक्टर के बीच सापेक्ष गति से। किसी दिए गए लूप में करंट का परिमाण चुंबकीय क्षेत्र की ताकत, लूप के क्षेत्र और फ्लक्स के परिवर्तन की दर के समानुपाती होता है, और सामग्री की प्रतिरोधकता के व्युत्क्रमानुपाती होता है। जब रेखांकन, धातु के एक टुकड़े के भीतर ये गोलाकार धाराएँ एक तरल में भँवर या भँवर की तरह अस्पष्ट दिखती हैं।

लेनज़ के नियम के अनुसार, एक भंवर धारा एक चुंबकीय क्षेत्र बनाती है जो इसे बनाने वाले चुंबकीय क्षेत्र में परिवर्तन का विरोध करती है, और इस प्रकार भंवर धाराएं चुंबकीय क्षेत्र के स्रोत पर वापस प्रतिक्रिया करती हैं। उदाहरण के लिए, गतिमान चुंबकीय क्षेत्र द्वारा सतह में प्रेरित एड़ी धाराओं के कारण, पास की एक प्रवाहकीय सतह एक गतिमान चुंबक पर एक ड्रैग बल लगाती है जो इसकी गति का विरोध करती है। यह प्रभाव एड़ी के मौजूदा ब्रेक में नियोजित होता है जो बंद होने पर बिजली के उपकरणों को जल्दी से घुमाने से रोकने के लिए उपयोग किया जाता है। कंडक्टर के प्रतिरोध के माध्यम से बहने वाली धारा भी सामग्री में गर्मी के रूप में ऊर्जा का प्रसार करती है। इस प्रकार भँवर धाराएँ प्रत्यावर्ती धारा (AC) प्रेरकों, ट्रांसफार्मर, विद्युत मोटरों और जनरेटरों, और अन्य AC मशीनरी में ऊर्जा हानि का एक कारण हैं, जिन्हें कम से कम करने के लिए टुकड़े टुकड़े में चुंबकीय कोर या फेराइट कोर जैसे विशेष निर्माण की आवश्यकता होती है। एड़ी धाराओं का उपयोग प्रेरण हीटिंग भट्टियों और उपकरणों में वस्तुओं को गर्म करने के लिए किया जाता है, और एड़ी-वर्तमान परीक्षण उपकरणों का उपयोग करके धातु के हिस्सों में दरारें और कमियों का पता लगाने के लिए किया जाता है।

पद की उत्पत्ति

भंवर धारा शब्द द्रव गतिकी में पानी में देखी जाने वाली समान धाराओं से आता है, जिससे विक्षोभ के स्थानीय क्षेत्रों को भंवरों के रूप में जाना जाता है जो लगातार भंवरों को जन्म देते हैं। कुछ समान रूप से, भँवर धाराओं को बनने में समय लग सकता है और कंडक्टरों में उनके अधिष्ठापन के कारण बहुत कम समय तक बना रह सकता है।

इतिहास

एडी धाराओं का निरीक्षण करने वाला पहला व्यक्ति फ्रांस के 25 वें प्रधान मंत्री फ्रैंकोइस अरागो (1786-1853) थे, जो गणितज्ञ, भौतिक विज्ञानी और खगोलविद भी थे। 1824 में उन्होंने देखा जिसे घूर्णी चुंबकत्व कहा जाता है, और यह कि अधिकांश प्रवाहकीय पिंडों को चुम्बकित किया जा सकता है; इन खोजों को माइकल फैराडे (1791-1867) ने पूरा किया और समझाया।

1834 में, हेनरिक लेन्ज़ ने लेन्ज़ के नियम को बताया, जो कहता है कि किसी वस्तु में प्रेरित धारा प्रवाह की दिशा ऐसी होगी कि उसका चुंबकीय क्षेत्र चुंबकीय प्रवाह के परिवर्तन का विरोध करेगा जो वर्तमान प्रवाह का कारण बनता है। एड़ी धाराएं एक द्वितीयक क्षेत्र उत्पन्न करती हैं जो बाहरी क्षेत्र के एक हिस्से को रद्द कर देता है और कंडक्टर से बचने के लिए कुछ बाहरी प्रवाह का कारण बनता है।

फ्रांसीसी भौतिक विज्ञानी लियोन फौकॉल्ट (1819-1868) को भंवर धाराओं की खोज करने का श्रेय दिया जाता है। सितंबर 1855 में, उन्होंने पाया कि तांबे की डिस्क के घूमने के लिए आवश्यक बल तब अधिक हो जाता है जब इसे एक चुंबक के ध्रुवों के बीच अपनी रिम के साथ घुमाने के लिए बनाया जाता है, उसी समय डिस्क में प्रेरित भंवर धारा द्वारा गर्म हो जाती है। गैर-विनाशकारी परीक्षण के लिए एडी करंट का पहला उपयोग 1879 में हुआ जब डेविड ई. ह्यूजेस ने धातुकर्म छँटाई परीक्षण करने के लिए सिद्धांतों का उपयोग किया।

व्याख्या

एड़ी धाराएं (<अवधि शैली = रंग: लाल;>I, लाल) प्रवाहकीय धातु प्लेट (C) में प्रेरित होता है क्योंकि यह चुंबक (N) के नीचे दाईं ओर जाता है। चुंबकीय क्षेत्र (B, हरा) प्लेट के माध्यम से नीचे निर्देशित किया जाता है। धातु में इलेक्ट्रॉनों पर चुंबकीय क्षेत्र का लोरेंत्ज़ बल चुंबक के नीचे एक बग़ल में धारा को प्रेरित करता है। चुंबकीय क्षेत्र, बग़ल में चलने वाले इलेक्ट्रॉनों पर कार्य करता है, शीट के वेग के विपरीत एक लोरेंत्ज़ बल बनाता है, जो शीट पर ड्रैग फोर्स के रूप में कार्य करता है। <अवधि शैली = रंग: नीला; >नीले तीर आवेशों की वर्तुल गति द्वारा उत्पन्न प्रतिचुम्बकीय क्षेत्र हैं।
इलेक्ट्रॉन का आवेश। चूँकि इलेक्ट्रॉन पर ऋणात्मक आवेश होता है, W:दाहिने हाथ के नियम से यह दिशा में निर्देशित होता है +z दिशा। पर e2 यह बल इलेक्ट्रॉन को बग़ल में दिशा में वेग का एक घटक देता है (v2, काला तीर) इस बग़ल में वेग पर कार्य करने वाला चुंबकीय क्षेत्र, फिर के कण पर एक लोरेंत्ज़ बल लगाता है F2 = −e(v2 × B). दाहिने हाथ के नियम से, यह में निर्देशित है x दिशा, वेग के विपरीत v धातु की चादर का। यह बल इलेक्ट्रॉन को गति प्रदान करता है जिससे यह शीट के विपरीत वेग का एक घटक बन जाता है। शीट के परमाणुओं के साथ इन इलेक्ट्रॉनों की टक्कर शीट पर एक ड्रैग फोर्स लगाती है।
एड़ी वर्तमान ब्रेक। इस आरेखण में उत्तरी चुंबकीय ध्रुव का टुकड़ा (शीर्ष) डिस्क से दक्षिण की तुलना में और दूर दिखाया गया है; यह सिर्फ धाराएं दिखाने के लिए जगह छोड़ने के लिए है। एक वास्तविक एडी करंट ब्रेक में पोल ​​के टुकड़े डिस्क के जितना संभव हो उतना करीब स्थित होते हैं।

एक चुंबक अपने चुंबकीय क्षेत्र के माध्यम से चलती धातु की चादर में वृत्ताकार विद्युत धाराओं को प्रेरित करता है। आरेख को दाईं ओर देखें। यह एक धातु की चादर (C) को एक स्थिर चुंबक के नीचे दाहिनी ओर बढ़ते हुए दिखाता है। चुंबक के उत्तरी ध्रुव N का चुंबकीय क्षेत्र (B, हरा तीर) शीट से नीचे की ओर गुजरता है। चूँकि धातु गतिमान है, शीट के दिए गए क्षेत्र के माध्यम से चुंबकीय प्रवाह बदल रहा है। शीट के उस हिस्से में जो चुंबक के अग्रणी किनारे (बाईं ओर) के नीचे चल रहा है, शीट पर दिए गए बिंदु के माध्यम से चुंबकीय क्षेत्र बढ़ता जा रहा है क्योंकि यह चुंबक के करीब आता है, dB/dt > 0। फैराडे के प्रेरण के नियम से, यह चुंबकीय क्षेत्र रेखाओं के चारों ओर वामावर्त दिशा में शीट में एक गोलाकार विद्युत क्षेत्र बनाता है। यह क्षेत्र शीट में विद्युत प्रवाह (I, लाल) के वामावर्त प्रवाह को प्रेरित करता है। यह भंवर धारा है। चुंबक के अनुगामी किनारे (दाईं ओर) के नीचे शीट का हिस्सा, शीट पर दिए गए बिंदु के माध्यम से चुंबकीय क्षेत्र कम हो रहा है क्योंकि यह चुंबक से और दूर जा रहा है, dB/dt < 0, शीट में दक्षिणावर्त दिशा में एक दूसरी एड़ी की धारा को प्रेरित करना।

करंट को समझने का एक अन्य समकक्ष तरीका यह देखना है कि धातु शीट में मुक्त आवेश वाहक (इलेक्ट्रॉन) शीट के साथ दाईं ओर जा रहे हैं, इसलिए चुंबकीय क्षेत्र लोरेंत्ज़ बल के कारण उन पर पार्श्व बल लगाता है। चूँकि आवेशों का वेग v दाईं ओर है और चुंबकीय क्षेत्र B नीचे की ओर निर्देशित है, दाहिने हाथ के नियम से सकारात्मक आवेशों पर लोरेंत्ज़ बल F = q(v × B) आरेख के पीछे की ओर है (बाईं ओर) जब गति v की दिशा में सामना करना पड़ रहा हो)। यह चुंबक के नीचे पीछे की ओर एक करंट I का कारण बनता है, जो चुंबकीय क्षेत्र के बाहर शीट के हिस्सों के चारों ओर चक्कर लगाता है, दक्षिणावर्त और बाईं ओर वामावर्त, फिर से चुंबक के सामने। धातु में गतिशील आवेश वाहक, इलेक्ट्रॉन, वास्तव में एक ऋणात्मक आवेश (q < 0) रखते हैं, इसलिए उनकी गति दिखाई गई पारंपरिक धारा की दिशा के विपरीत होती है।

चुंबक का चुंबकीय क्षेत्र, चुंबक के नीचे बग़ल में चलने वाले इलेक्ट्रॉनों पर कार्य करता है, फिर धातु की चादर के वेग के विपरीत, पीछे की ओर निर्देशित एक लोरेंत्ज़ बल लगाता है। इलेक्ट्रॉन, धातु के जाली परमाणुओं के साथ टकराव में, इस बल को शीट में स्थानांतरित कर देते हैं, शीट पर इसके वेग के अनुपात में एक ड्रैग बल लगाते हैं। इस ड्रैग फोर्स पर काबू पाने वाली गतिज ऊर्जा धातु के प्रतिरोध के माध्यम से बहने वाली धाराओं द्वारा गर्मी के रूप में नष्ट हो जाती है, इसलिए धातु चुंबक के नीचे गर्म हो जाती है।

ऐम्पियर के परिपथीय नियम के कारण शीट में प्रत्येक वृत्ताकार धारा एक विपरीत चुंबकीय क्षेत्र (नीला तीर) बनाती है। ड्रैग फोर्स को समझने का एक और तरीका यह है कि लेनज़ के नियम के कारण काउंटरफिल्ड्स शीट के माध्यम से चुंबकीय क्षेत्र में परिवर्तन का विरोध करते हैं। दाहिने हाथ के नियम द्वारा चुंबक (बाईं ओर) के अग्रणी किनारे पर वामावर्त धारा चुंबक के क्षेत्र का विरोध करते हुए ऊपर की ओर इंगित एक चुंबकीय क्षेत्र बनाती है, जिससे शीट और चुंबक के अग्रणी किनारे के बीच एक प्रतिकारक बल उत्पन्न होता है। इसके विपरीत, अनुगामी किनारे (दाईं ओर) पर, दक्षिणावर्त धारा एक चुंबकीय क्षेत्र को नीचे की ओर इंगित करती है, उसी दिशा में जैसे चुंबक का क्षेत्र, शीट और चुंबक के अनुगामी किनारे के बीच एक आकर्षक बल बनाता है। ये दोनों बल चादर की गति का विरोध करते हैं।

गुण

गैर-शून्य प्रतिरोधकता के संवाहकों में भंवर धाराएं गर्मी के साथ-साथ विद्युत चुम्बकीय बल उत्पन्न करती हैं। प्रेरण हीटिंग के लिए गर्मी का उपयोग किया जा सकता है। विद्युत चुम्बकीय बलों का उपयोग उत्तोलन, गति पैदा करने, या एक मजबूत ब्रेकिंग प्रभाव देने के लिए किया जा सकता है। भंवर धाराओं के अवांछनीय प्रभाव भी हो सकते हैं, उदाहरण के लिए ट्रांसफॉर्मर में बिजली की हानि। इस आवेदन में, कंडक्टरों के टुकड़े टुकड़े या कंडक्टर आकार के अन्य विवरणों द्वारा उन्हें पतली प्लेटों से कम किया जाता है।

कंडक्टरों में त्वचा के प्रभाव के लिए स्व-प्रेरित एड़ी धाराएं जिम्मेदार हैं।[1] उत्तरार्द्ध का उपयोग ज्यामिति सुविधाओं के लिए सामग्री के गैर-विनाशकारी परीक्षण के लिए किया जा सकता है जैसे सूक्ष्म दरारें।[2] एक समान प्रभाव निकटता प्रभाव है, जो बाह्य रूप से प्रेरित भंवर धाराओं के कारण होता है।[3] एक वस्तु या किसी वस्तु का हिस्सा स्थिर क्षेत्र की तीव्रता और दिशा का अनुभव करता है जहां अभी भी क्षेत्र और वस्तु की सापेक्ष गति होती है (उदाहरण के लिए आरेख में क्षेत्र के केंद्र में), या अस्थिर क्षेत्र जहां धाराएं प्रवाहित नहीं हो सकती हैं कंडक्टर की ज्यामिति। इन स्थितियों में आवेश वस्तु पर या उसके भीतर एकत्रित हो जाते हैं और ये आवेश तब स्थिर विद्युत क्षमता उत्पन्न करते हैं जो किसी और धारा का विरोध करते हैं। धाराएं प्रारम्भ में स्थिर क्षमता के निर्माण से जुड़ी हो सकती हैं, लेकिन ये क्षणभंगुर और छोटी हो सकती हैं।

(बाएं) भंवर धाराएं (I, लाल) एक ठोस लोहे के ट्रांसफार्मर कोर के भीतर। (दाएं) क्षेत्र के समानांतर पतले लेमिनेशन से कोर बनाना (B, हरा) उनके बीच इन्सुलेशन (सी) के साथ एड़ी धाराओं को कम करता है। हालाँकि क्षेत्र और धाराएँ एक दिशा में दिखाई जाती हैं, वे वास्तव में ट्रांसफॉर्मर वाइंडिंग में प्रत्यावर्ती धारा के साथ विपरीत दिशा में होती हैं।

भँवर धाराएँ प्रतिरोधक हानि उत्पन्न करती हैं जो ऊर्जा के कुछ रूपों, जैसे गतिज ऊर्जा, को ऊष्मा में परिवर्तित करती हैं। यह जूल हीटिंग लौह-कोर ट्रांसफार्मर और विद्युत मोटर्स और अन्य उपकरणों की दक्षता कम कर देता है जो बदलते चुंबकीय क्षेत्र का उपयोग करते हैं। कम विद्युत चालकता (जैसे, फेराइट्स) वाली चुंबकीय कोर सामग्री का चयन करके या या लैमिनेशन के रूप में ज्ञात चुंबकीय सामग्री की पतली शीट का उपयोग करके इन उपकरणों में एड़ी धाराओं को कम किया जाता है। इलेक्ट्रॉन लैमिनेशन के बीच के इंसुलेटिंग गैप को पार नहीं कर सकते हैं और इसलिए चौड़े आर्क्स पर घूमने में असमर्थ हैं। हॉल प्रभाव के अनुरूप एक प्रक्रिया में, लेमिनेशन की सीमाओं पर आवेश एकत्र होते हैं, विद्युत क्षेत्र उत्पन्न करते हैं जो आवेश के किसी भी और संचय का विरोध करते हैं और इस प्रकार एड़ी धाराओं को दबाते हैं। आसन्न लैमिनेशन के बीच की दूरी जितनी कम होगी (अर्थात, प्रति यूनिट क्षेत्र में लेमिनेशन की संख्या जितनी अधिक होगी, लागू क्षेत्र के लंबवत), एड़ी धाराओं का दमन उतना ही अधिक होगा।

इनपुट ऊर्जा का ऊष्मा में रूपांतरण हमेशा अवांछनीय नहीं होता है, तथापि, कुछ व्यावहारिक अनुप्रयोग हैं। एक कुछ ट्रेनों के ब्रेक में होता है जिसे एडी करंट ब्रेक कहा जाता है। ब्रेक लगाने के दौरान, धातु के पहिये एक विद्युत चुम्बक से एक चुंबकीय क्षेत्र के संपर्क में आते हैं, जिससे पहियों में एड़ी धाराएँ उत्पन्न होती हैं। यह एडी करंट पहियों की गति से बनता है। इसलिए, लेंज के नियम के अनुसार, भंवर धारा द्वारा निर्मित चुंबकीय क्षेत्र इसके कारण का विरोध करेगा। इस प्रकार पहिए को पहिए की प्रारंभिक गति का विरोध करने वाले बल का सामना करना पड़ेगा। पहिए जितनी तेजी से घूमते हैं, प्रभाव उतना ही मजबूत होता है, जिसका अर्थ है कि जैसे ही ट्रेन धीमी होती है, ब्रेकिंग बल कम हो जाता है, जिससे एक चिकनी रोक गति उत्पन्न होती है।

इंडक्शन हीटिंग धातु की वस्तुओं को गर्म करने के लिए एड़ी की धाराओं का उपयोग करता है।

भंवर धाराओं का विद्युत अपव्यय

कुछ मान्यताओं के तहत (समान सामग्री, समान चुंबकीय क्षेत्र, कोई त्वचा प्रभाव नहीं, आदि) एक पतली शीट या तार के लिए प्रति इकाई द्रव्यमान में एड़ी धाराओं के कारण खोई हुई शक्ति की गणना निम्नलिखित समीकरण से की जा सकती है:[4]

जहां

  • P प्रति इकाई द्रव्यमान (W/kg) में खोई हुई शक्ति है,
  • Bp शिखर चुंबकीय क्षेत्र (T) है,
  • d शीट की मोटाई या तार का व्यास (एम) है,
  • f आवृत्ति (हर्ट्ज) है,
  • k एक पतली शीट के लिए 1 और एक पतली तार के लिए 2 के बराबर एक स्थिरांक है,
  • ρ सामग्री की प्रतिरोधकता (Ω m) है, और
  • D सामग्री का घनत्व है (kg/m3).

यह समीकरण केवल तथाकथित अर्ध-स्थैतिक स्थितियों के तहत मान्य है, जहां चुंबकीयकरण की आवृत्ति का परिणाम त्वचा के प्रभाव में नहीं होता है; अर्थात्, विद्युत चुम्बकीय तरंग पूरी तरह से सामग्री में प्रवेश करती है।

त्वचा का प्रभाव

बहुत तेजी से बदलते क्षेत्रों में, चुंबकीय क्षेत्र सामग्री के आंतरिक भाग में पूरी तरह से प्रवेश नहीं करता है। यह त्वचा प्रभाव उपरोक्त समीकरण को अमान्य कर देता है। तथापि, किसी भी मामले में क्षेत्र के समान मान की बढ़ी हुई आवृत्ति हमेशा एड़ी धाराओं को बढ़ाएगी, यहां तक ​​कि गैर-समान क्षेत्र पैठ के साथ भी।[citation needed] एक अच्छे कंडक्टर के लिए पैठ की गहराई की गणना निम्न समीकरण से की जा सकती है:[5]

कहाँ δ प्रवेश गहराई (एम) है, f आवृत्ति (हर्ट्ज) है, μ सामग्री (H/m) की चुंबकीय पारगम्यता है, और σ सामग्री (S/m) की विद्युत चालकता है।

प्रसार समीकरण

एक सामग्री में एड़ी धाराओं के प्रभाव के मॉडलिंग के लिए एक उपयोगी समीकरण की व्युत्पत्ति, एम्पीयर के कानून के विभेदक, मैग्नेटोस्टैटिक रूप से प्रारंभ होती है,[6] वर्तमान घनत्व J के आसपास चुम्बकीय क्षेत्र H के लिए एक अभिव्यक्ति प्रदान करती है:

इस समीकरण के दोनों पक्षों पर कर्ल लेना और फिर कर्ल के कर्ल के लिए एक सामान्य वेक्टर कैलकुलस पहचान का उपयोग करना
चुंबकत्व के लिए गाउस के नियम से, ∇ ⋅ H = 0, इसलिए
ओम के नियम का उपयोग करते हुए, J = σE, जो सामग्री की चालकता σ के संदर्भ में वर्तमान घनत्व J को विद्युत क्षेत्र E से संबंधित करता है, और आइसोट्रोपिक सजातीय चालकता मानते हुए, समीकरण को इस प्रकार लिखा जा सकता है
फैराडे के नियम के विभेदक रूप का उपयोग करते हुए, ∇ × E = −B/t, यह देता है
परिभाषा से, B = μ0(H + M), जहां M सामग्री का चुंबकीयकरण है और μ0 वैक्यूम पारगम्यता है। प्रसार समीकरण इसलिए है


अनुप्रयोग

विद्युत चुम्बकीय ब्रेकिंग

वाल्टेनहोफेन के पेंडुलम का प्रदर्शन, एडी करंट ब्रेक का अग्रदूत। इस पेंडुलम के माध्यम से भँवर धाराओं के गठन और दमन का प्रदर्शन किया गया है, एक धातु की प्लेट जो एक मजबूत विद्युत चुंबक के ध्रुव के टुकड़ों के बीच दोलन करती है। जैसे ही एक पर्याप्त मजबूत चुंबकीय क्षेत्र चालू किया जाता है, क्षेत्र में प्रवेश करने पर पेंडुलम को रोक दिया जाता है।

एड़ी वर्तमान ब्रेक चलती वस्तुओं को धीमा करने या रोकने के लिए एड़ी धाराओं द्वारा बनाई गई ड्रैग फोर्स को ब्रेक (प्रौद्योगिकी) के रूप में उपयोग करते हैं। चूंकि ब्रेक शू या ड्रम के साथ कोई संपर्क नहीं होता है, इसलिए कोई यांत्रिक घिसाव नहीं होता है। हालांकि, एक एड़ी वर्तमान ब्रेक एक होल्डिंग टोक़ प्रदान नहीं कर सकता है और इसलिए यांत्रिक ब्रेक के साथ संयोजन में उपयोग किया जा सकता है, उदाहरण के लिए, ओवरहेड क्रेन पर। एक अन्य अनुप्रयोग कुछ रोलर कोस्टर पर है, जहां कार से निकलने वाली भारी तांबे की प्लेटों को बहुत मजबूत स्थायी चुम्बकों के जोड़े के बीच ले जाया जाता है। प्लेटों के भीतर विद्युत प्रतिरोध घर्षण के अनुरूप एक ड्रैगिंग प्रभाव का कारण बनता है, जो कार की गतिज ऊर्जा को नष्ट कर देता है। इसी तकनीक का उपयोग रेल कारों में इलेक्ट्रोमैग्नेटिक ब्रेक में और सर्कुलर आरी जैसे बिजली के उपकरणों में ब्लेड को जल्दी से रोकने के लिए किया जाता है। विद्युत चुम्बकों का उपयोग, स्थायी चुम्बकों के विपरीत, चुंबकीय क्षेत्र की शक्ति को समायोजित किया जा सकता है और इसलिए ब्रेकिंग प्रभाव का परिमाण बदल गया।

प्रतिकारक प्रभाव और उत्तोलन

एक मोटी एल्यूमीनियम स्लैब के ऊपर रखी रैखिक मोटर के माध्यम से एक क्रॉस सेक्शन। जैसे ही रैखिक प्रेरण मोटर का क्षेत्र पैटर्न बाईं ओर जाता है, एड़ी धाराएं धातु में पीछे रह जाती हैं और इससे क्षेत्र रेखाएं झुक जाती हैं।

एक अलग-अलग चुंबकीय क्षेत्र में, प्रेरित धाराएं प्रतिचुंबकीय जैसे प्रतिकर्षण प्रभाव प्रदर्शित करती हैं। एक प्रवाहकीय वस्तु एक प्रतिकर्षण बल का अनुभव करेगी। यह गुरुत्वाकर्षण के खिलाफ वस्तुओं को उठा सकता है, हालांकि निरंतर बिजली इनपुट के साथ भंवर धाराओं द्वारा नष्ट ऊर्जा को बदलने के लिए। एक उदाहरण अनुप्रयोग एक एड़ी वर्तमान विभाजक में अन्य धातुओं से एल्युमिनियम कैन डिब्बे को अलग करना है। लौह धातु चुंबक से चिपकी रहती है, और एल्यूमीनियम (और अन्य अलौह कंडक्टर) चुंबक से दूर धकेल दिए जाते हैं; यह एक अपशिष्ट प्रवाह को लौह और अलौह स्क्रैप धातु में अलग कर सकता है।

एक बहुत मजबूत हैंडहेल्ड चुंबक के साथ, जैसे कि Neodymium से बने चुंबक को केवल एक छोटे से अलगाव के साथ एक सिक्के पर तेजी से घुमाकर एक बहुत ही समान प्रभाव देखा जा सकता है। चुंबक की ताकत, सिक्के की पहचान, और चुंबक और सिक्के के बीच अलगाव के आधार पर, कोई व्यक्ति सिक्के को चुंबक से थोड़ा आगे धकेलने के लिए प्रेरित कर सकता है - भले ही सिक्के में कोई चुंबकीय तत्व न हो, जैसे यूएस पेनी ( संयुक्त राज्य सिक्का)। एक अन्य उदाहरण में तांबे की एक ट्यूब के नीचे एक मजबूत चुंबक गिराना शामिल है[7] - चुंबक नाटकीय रूप से धीमी गति से गिरता है।

बिना किसी विद्युत प्रतिरोध वाले एक आदर्श कंडक्टर में, सतही एड़ी धाराएं कंडक्टर के अंदर के क्षेत्र को बिल्कुल रद्द कर देती हैं, इसलिए कोई चुंबकीय क्षेत्र कंडक्टर में प्रवेश नहीं करता है। चूँकि प्रतिरोध में कोई ऊर्जा नष्ट नहीं होती है, जब चुंबक को कंडक्टर के पास लाया जाता है तो एड़ी की धाराएँ चुंबक के स्थिर होने के बाद भी बनी रहती हैं, और चुंबकीय उत्तोलन की अनुमति देकर गुरुत्वाकर्षण बल को ठीक से संतुलित कर सकती हैं। सुपरकंडक्टर्स एक अलग स्वाभाविक क्वांटम यांत्रिक घटना भी प्रदर्शित करते हैं जिसे मीस्नर प्रभाव कहा जाता है जिसमें सुपरकंडक्टिंग बनने पर सामग्री में मौजूद किसी भी चुंबकीय क्षेत्र की रेखाओं को निष्कासित कर दिया जाता है, इस प्रकार एक सुपरकंडक्टर में चुंबकीय क्षेत्र हमेशा शून्य होता है।

इलेक्ट्रॉनिक गति नियंत्रण के तुलनीय इलेक्ट्रॉनिक स्विचिंग के साथ इलेक्ट्रोमैग्नेट्स का उपयोग करना संभव है कि एक मनमाना दिशा में चलते हुए विद्युत चुम्बकीय क्षेत्र उत्पन्न हो। जैसा कि एडी करंट ब्रेक के बारे में ऊपर दिए गए खंड में वर्णित है, एक गैर-फेरोमैग्नेटिक कंडक्टर सतह इस गतिशील क्षेत्र के भीतर आराम करती है। हालांकि जब यह क्षेत्र चल रहा होता है, तो एक वाहन को उत्तोलित और प्रेरित किया जा सकता है। यह एक मैग्लेव के बराबर है लेकिन रेल से बंधा नहीं है।[8]


धातुओं की पहचान

कुछ सिक्का चालित व्यापारिक मशीनों में, नकली सिक्कों, या स्लग (सिक्का) का पता लगाने के लिए एड़ी धाराओं का उपयोग किया जाता है। सिक्का एक स्थिर चुंबक के पास से गुजरता है, और भंवर धाराएं इसकी गति को धीमा कर देती हैं। एड़ी धाराओं की ताकत, और इस प्रकार मंदता, सिक्के की धातु की चालकता पर निर्भर करती है। स्लग को वास्तविक सिक्कों की तुलना में एक अलग डिग्री तक धीमा कर दिया जाता है, और इसका उपयोग उन्हें अस्वीकृति स्लॉट में भेजने के लिए किया जाता है।

कंपन और स्थिति संवेदन

एड़ी धाराओं का उपयोग कुछ प्रकार के निकटता सेंसरों में कंपन और उनके बीयरिंगों के भीतर घूर्णन शाफ्ट की स्थिति का निरीक्षण करने के लिए किया जाता है। यह तकनीक मूल रूप से 1930 के दशक में सामान्य विद्युतीय के शोधकर्ताओं द्वारा वैक्यूम ट्यूब सर्किटरी का उपयोग करने में अग्रणी थी। 1950 के दशक के अंत में, बेंटली नेवादा कॉर्पोरेशन में डोनाल्ड ई. बेंटली द्वारा ठोस-राज्य संस्करण विकसित किए गए थे। ये सेंसर बहुत छोटे विस्थापन के प्रति बेहद संवेदनशील होते हैं, जो उन्हें आधुनिक टर्बोमशीनरी में मिनट के कंपन (एक इंच के कई हजारवें हिस्से के क्रम में) का निरीक्षण करने के लिए उपयुक्त बनाते हैं। कंपन निगरानी के लिए उपयोग किए जाने वाले एक विशिष्ट निकटता संवेदक में 200 एमवी/मिल का स्केल कारक होता है।[clarification needed] टर्बो मशीनरी में ऐसे सेंसर के व्यापक उपयोग से उद्योग मानकों का विकास हुआ है जो उनके उपयोग और अनुप्रयोग को निर्धारित करता है। ऐसे मानकों के उदाहरण अमेरिकन पेट्रोलियम इंस्टीट्यूट (एपीआई) मानक 670 और मानकीकरण के लिए अंतर्राष्ट्रीय संगठन 7919 हैं।

फेरारीस त्वरण सेंसर, जिसे फेरारी सेंसर भी कहा जाता है, एक संपर्क रहित सेंसर है जो सापेक्ष त्वरण को मापने के लिए एड़ी धाराओं का उपयोग करता है।[9][10][11]


संरचनात्मक परीक्षण

भंवर धारा तकनीकों का उपयोग आमतौर पर गैर-विनाशकारी परीक्षण (एनडीई) और धातु संरचनाओं की एक बड़ी विविधता की स्थिति की निगरानी के लिए किया जाता है, जिसमें उष्मा का आदान प्रदान करने वाला ट्यूब, विमान फ्यूजलेज और विमान संरचनात्मक घटक शामिल हैं।

त्वचा प्रभाव

एसी करंट ले जाने वाले कंडक्टरों में एड़ी धाराएं त्वचा के प्रभाव का मूल कारण हैं।

ट्रांसफार्मर में चुंबकीय कोर का लेमिनेशन एड़ी धाराओं को कम करके दक्षता में काफी सुधार करता है

इसी तरह, परिमित चालकता की चुंबकीय सामग्री में, एड़ी की धाराएं अधिकांश चुंबकीय क्षेत्रों को सामग्री की सतह की केवल कुछ त्वचा की गहराई तक सीमित कर देती हैं। यह प्रभाव चुंबकीय कोर वाले इंडिकेटर्स और ट्रांसफॉर्मर में प्रवाह लिंकेज को सीमित करता है।

फ्लक्स पाथ दिखाते हुए ई-I ट्रांसफॉर्मर लैमिनेशन। गैप का प्रभाव जहां लैमिनेशन को एक साथ बट किया जाता है, ई लेमिनेशन के जोड़े को I लेमिनेशन के जोड़े के साथ वैकल्पिक रूप से कम किया जा सकता है, जिससे गैप के चारों ओर चुंबकीय प्रवाह के लिए एक रास्ता मिल जाता है।

अन्य अनुप्रयोग

  • रॉक क्लाइंबिंग ऑटो बेले[12]
  • जिप लाइन ब्रेक[13]
  • फ्री फॉल डिवाइस[14]
  • मेटल डिटेक्टर्स
  • गैर-चुंबकीय धातुओं के लिए चालकता मीटर[15][16]
  • एडजस्टेबल-स्पीड ड्राइव#एड़ी करंट ड्राइव|एडी करंट एडजस्टेबल-स्पीड ड्राइव
  • एड़ी-वर्तमान परीक्षण
  • बिजली मीटर (विद्युत यांत्रिक प्रेरण मीटर)
  • प्रेरण ऊष्मन
  • निकटता सेंसर (विस्थापन सेंसर)
  • वेंडिंग मशीन (सिक्कों का पता लगाना)
  • कोटिंग मोटाई माप[17]
  • शीट प्रतिरोध माप[18]
  • धातु पृथक्करण के लिए एड़ी वर्तमान विभाजक[19]
  • मैकेनिकल स्पीडोमीटर
  • सुरक्षा खतरा और दोष का पता लगाने के अनुप्रयोग

संदर्भ

Online citations
  1. Israel D. Vagner; B.I. Lembrikov; Peter Rudolf Wyder (17 November 2003). Electrodynamics of Magnetoactive Media. Springer Science & Business Media. pp. 73–. ISBN 978-3-540-43694-2.
  2. Walt Boyes (25 November 2009). Instrumentation Reference Book. Butterworth-Heinemann. pp. 570–. ISBN 978-0-08-094188-2.
  3. Howard Johnson; Howard W. Johnson; Martin Graham (2003). High-speed Signal Propagation: Advanced Black Magic. Prentice Hall Professional. pp. 80–. ISBN 978-0-13-084408-8.
  4. F. Fiorillo, Measurement and Characterization of Magnetic Materials, Elsevier Academic Press, 2004, ISBN 0-12-257251-3, page. 31
  5. Wangsness, Roald. Electromagnetic Fields (2nd ed.). pp. 387–8.
  6. G. Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers, San Diego: Academic Press, 1998.
  7. Archived at Ghostarchive and the Wayback Machine: "Eddy Current Tubes". YouTube.
  8. Hendo Hoverboards - World's first REAL hoverboard
  9. Bernhard Hiller. "Ferraris Acceleration Sensor - Principle and Field of Application in Servo Drives" Archived 27 July 2014 at the Wayback Machine.
  10. Jian Wang, Paul Vanherck, Jan Swevers, Hendrik Van Brussel. "Speed Observer Based on Sensor Fusion Combining Ferraris Sensor and Linear Position Encoder Signals".
  11. J. Fassnacht and P. Mutschler. "Benefits and limits of using an acceleration sensor in actively damping high frequent mechanical oscillations". 2001. doi: 10.1109/IAS.2001.955949 .
  12. "TRUBLUE Auto Belay". Head Rush Technologies. Head Rush Technologies. Retrieved 8 March 2016.
  13. "zipSTOP Zip Line Brake System". Head Rush Technologies. Head Rush Technologies. Archived from the original on 6 June 2017. Retrieved 8 March 2016.
  14. "Our Patented Technology". Head Rush Technologies. Head Rush Technologies. Retrieved 8 March 2016.
  15. "Zappi - Eddy Current Conductivity Meter - Products". zappitec.com. Retrieved 8 May 2022.
  16. "Institut Dr. Foerster: SIGMATEST". www.foerstergroup.de. Retrieved 28 June 2018.
  17. Coating Thickness Measurement with Electromagnetic Methods
  18. "Ohm/sq & OD". www.nagy-instruments.de. Archived from the original on 4 March 2016. Retrieved 8 May 2016.
  19. "Eddy Current Separator for metal separation". www.cogelme.com. Retrieved 8 May 2016.
General references


अग्रिम पठन

  • Stoll, R. L. (1974). The Analysis of Eddy Currents. Oxford University Press.
  • Krawczyk, Andrzej; J. A. Tegopoulos. Numerical Modelling of Eddy Currents.


बाहरी संबंध