जीवाणु जीनोम

From alpha
Jump to navigation Jump to search

यूकेरियोट्स के जीनोम की तुलना में जीवाणु जीनोम सामान्य रूप से प्रजातियों के बीच आकार में छोटे और कम भिन्न होते हैं। जीवाणु जीनोम का आकार लगभग 130 केबीपी [1][2] से 14 एमबीपी से अधिक हो सकता है।[3] एक अध्ययन जिसमें 478 जीवाणु जीनोम सम्मिलित थे, लेकिन यह सीमित नहीं था, ने निष्कर्ष निकाला कि जैसे-जैसे जीनोम का आकार बढ़ता है, गैर-यूकेरियोट्स की तुलना में यूकेरियोट्स में जीनों की संख्या असमान रूप से धीमी गति से बढ़ती है। इस प्रकार, जीवाणु की तुलना में गैर-जीवाणु में गैर-कोडिंग डीएनए का अनुपात जीनोम के आकार के साथ अधिक तेज़ी से बढ़ता है। यह इस तथ्य के अनुरूप है कि अधिकांश यूकेरियोटिक डीएनए गैर-जीन कोडिंग है, जबकि अधिकांश प्राक्केंद्रकी, विषाणु और कोशिकांग जीन कोडिंग हैं।[4] अभी, हमारे पास 50 अलग-अलग जीवाणु फ़ाइला और 11 अलग-अलग प्राचीन फ़ाइला से जीनोम अनुक्रम हैं। दूसरी पीढ़ी के अनुक्रमण से कई प्रारूप जीनोम प्राप्त हुए हैं जेनबैंक में लगभग 90% जीवाणु जीनोम वर्तमान में पूर्ण नहीं हैं; तीसरी पीढ़ी के अनुक्रमण से अंततः कुछ घंटों में एक पूर्ण जीनोम प्राप्त हो सकता है। जीनोम अनुक्रम जीवाणु में बहुत विविधता प्रकट करते हैं। 2000 से अधिक एस्चेरिचिया कोली जीनोम के विश्लेषण से लगभग 3100 जीन वर्गों के एक ई कोलाई कोर जीनोम और कुल लगभग 89,000 विभिन्न जीन वर्गों का पता चलता है।[5] जीनोम अनुक्रमों से पता चलता है कि परजीवी जीवाणु में 500-1200 जीन होते हैं, मुक्त रहने वाले जीवाणु में 1500-7500 जीन होते हैं, और आर्किया में 1500-2700 जीन होते हैं।[6] कुष्ठ कीटाणु की तुलना उत्पादकों के जीवाणु से करते समय कोल एट अल द्वारा की गई एक उल्लेखनीय खोज ने भारी मात्रा में जीन क्षय का वर्णन किया।[7] अध्ययनों से पता चला है कि कई जीवाणुओं के जीनोम आकार उनके उत्पादकों की तुलना में छोटे होते हैं।[8] वर्षों से, शोधकर्ताओं ने जीवाणु जीनोम क्षय की सामान्य प्रवृत्ति और जीवाणु जीनोम के अपेक्षाकृत छोटे आकार की व्याख्या करने के लिए कई सिद्धांत प्रस्तावित किए हैं। प्रभावशाली साक्ष्य इंगित करता है कि जीवाणु जीनोम का स्पष्ट क्षरण विलोपन अभिनति के कारण होता है।

2014 तक, 30,000 से अधिक अनुक्रमित जीवाणु जीनोम सार्वजनिक रूप से उपलब्ध हैं और हजारों मेटा-जीनोम परियोजनाएं हैं। जीवाणु और आर्किया का जीनोमिक विश्वकोश (जीईबीए) जैसी परियोजनाओं में और जीनोम जोड़ने का प्रयोजन है।[5]

एकल जीन तुलना को अब अधिक सामान्य विधियों द्वारा प्रतिस्थापित किया जा रहा है। इन तरीकों के परिणामस्वरूप आनुवंशिक संबंधों पर नए दृष्टिकोण सामने आए हैं जिनका पहले केवल अनुमान लगाया गया था।[5]

जीवाणु जीनोम अनुक्रमण के दूसरे दशक में एक महत्वपूर्ण उपलब्धि मेटा-जीनोम आंकडे का उत्पादन था, जो एक नमूने में सम्मिलित सभी डीएनए को आच्छादित करता है। पहले, केवल दो मेटा-जीनोम परियोजना प्रकाशित हुई थी।[5]


जीवाणु जीनोम

जीनोम आकार के कार्य के रूप में जेनबैंक को प्रस्तुत जीनोम में एनोटेट प्रोटीन की कुल संख्या का लॉग-लॉग आरेख। एनसीबीआई जीनोम रिपोर्ट के आंकड़ों के आधार पर।

जीवाणु में दो महत्वपूर्ण तरीकों से यूकेरियोट्स से अलग एक सुसम्बद्ध जीनोम संरचना ह है: जीवाणु जीनोम के आकार और जीनोम में कार्यात्मक जीन की संख्या के बीच एक प्रबल सहसंबंध दिखाते हैं, और उन जीनों को ऑपेरॉन (कारक) में संरचित किया जाता है।[9][10] यूकेरियोटिक जीनोम (विशेष रूप से बहुकोशिकीय यूकेरियोट्स) की तुलना में जीवाणु जीनोम के सापेक्ष घनत्व का मुख्य कारण अंतराजीनी क्षेत्रो और आंतरेक के रूप में गैर कोडिंग डीएनए की उपस्थिति है।[10] कुछ उल्लेखनीय अपवादों में हाल ही में बने रोगजनक जीवाणु सम्मिलित हैं। यह प्रारंभ में कोल एट अल द्वारा एक अध्ययन में वर्णित किया गया था। जिसमें माइकोबैक्टीरियम लेप्री की खोज की गई थी कि उसके मुक्त-जीवित उत्पादकों की तुलना में कार्यात्मक जीनों (~40%) में छद्म जीन का अपेक्षाकृत अधिक प्रतिशत है।[7]

इसके अतिरिक्त, जीवाणुओं की प्रजातियों में, जीवन के अन्य प्रमुख समूहों के जीनोम के आकार की तुलना में जीनोम के आकार में अपेक्षाकृत कम भिन्नता होती है।[6] यूकेरियोटिक प्रजातियों में कार्यात्मक जीनों की संख्या पर विचार करते समय जीनोम का आकार अल्प प्रासंगिक होता है। जीवाणुओं में, हालांकि, जीनों की संख्या और जीनोम के आकार के बीच प्रबल सहसंबंध जीवाणु जीनोम के आकार को अनुसंधान और चर्चा के लिए एक दिलचस्प विषय बनाता है।[11]

जीवाणु के विकास की सामान्य प्रवृत्तियों से संकेत मिलता है कि जीवाणु का प्रारंभ मुक्त-जीवित जीवों के रूप में हुआ था। विकासपरक पथों ने कुछ जीवाणुओं को रोगजनक और सहजीवी बनने के लिए प्रेरित किया। जीवाणु की जीवन शैली उनके संबंधित जीनोम आकार में एक अभिन्न भूमिका निभाती है। मुक्त-जीवित जीवाणुओं में तीन प्रकार के जीवाणुओं में से सबसे बड़ा जीनोम होता है; हालाँकि, उनके पास जीवाणु की तुलना में कम छद्म जीन हैं जिन्होंने हाल ही में रोगजनकता प्राप्त की है।

परिणामी और हाल ही में विकसित रोगजनक जीवाणु मुक्त-जीवित जीवाणुओं की तुलना में एक छोटे जीनोम आकार का प्रदर्शन करते हैं, फिर भी उनके पास जीवाणुओं के किसी भी अन्य रूप की तुलना में अधिक छद्म जीन होते हैं।

अविकल्पी जीवाणु सहजीवी या रोगजनकों में सबसे छोटे जीनोम और तीन समूहों के सबसे कम छद्म जीन होते हैं।[12] जीवाणुओं की जीवन-शैलियों और जीनोम के आकार के बीच संबंध जीवाणु जीनोम विकास के तंत्र के रूप में प्रश्न होता है। जीवाणुओं के बीच जीनोम के आकार के विकास के पैटर्न की व्याख्या करने के लिए शोधकर्ताओं ने कई सिद्धांत विकसित किए हैं।

जीनोम तुलना और जातिवृत्तीय

चूंकि एकल-जीन तुलनाओं ने अपेक्षाकृत अधिकतम सीमा तक जीनोम तुलनाओं को तरीका दे दिया है, जीवाणु जीनोमों के जातिवृत्तीय ने परिशुद्धता में सुधार किया है। औसत न्यूक्लियोटाइड पहचान (एएनआई) विधि लगभग 10,000 बीपी के क्षेत्रों का लाभ उठाकर पूरे जीनोम के बीच आनुवंशिक दूरी की मात्रा निर्धारित करती है। एक जीनस के जीनोम से पर्याप्त डेटा के साथ, एल्गोरिदम को प्रजातियों को वर्गीकृत करने के लिए निष्पादित किया जाता है। यह 2013[5] में स्यूडोमोनास एवेलाना प्रजातियों के लिए और 2020 से सभी अनुक्रमित जीवाणु और आर्किया के लिए किया गया है।[13]

जीवाणु जीनोम के बारे में जानकारी निकालने के लिए, जीवाणु के कई उपभेदों के लिए कोर- और पैन-जीनोम आकार का मूल्यांकन किया गया है। 2012 में, कोर जीन वर्गों की संख्या लगभग 3000 थी। हालांकि, 2015 तक, उपलब्ध जीनोम में दस गुना से अधिक की वृद्धि के साथ, पैन-जीनोम में भी वृद्धि हुई है। जोड़े गए जीनोम की संख्या और पैन-जीनोम की वृद्धि के बीच सामान्य रूप से एक सकारात्मक संबंध है। दूसरी ओर, कोर जीनोम 2012 से स्थिर बना हुआ है। वर्तमान में, ई. कोलाई पैन-जीनोम लगभग 90,000 जीन वर्गों से बना है। इनमें से लगभग एक-तिहाई केवल एक जीनोम में सम्मिलित हैं। इनमें से कई, हालांकि, केवल जीन के भाग हैं और उद्यम त्रुटियों का परिणाम हैं। फिर भी, ई. कोलाई में संभवतः 60,000 से अधिक अद्वितीय जीन वर्ग हैं।[5]


जीवाणु जीनोम इवोल्यूशन के सिद्धांत edit

जीवाणु बड़ी मात्रा में जीन खो देते हैं क्योंकि वे मुक्त-जीवित या वैकल्पिक रूप से परजीवी जीवन चक्र से स्थायी मेजबान-निर्भर जीवन में संक्रमण करते हैं। जीवाणु जीनोम आकार के पैमाने के निचले सिरे की ओर माइकोप्लाज्मा और संबंधित जीवाणु हैं। प्रारंभिक आणविक फिलेजेनेटिक अध्ययनों से पता चला है कि माइकोप्लास्मास एक विकासपरक व्युत्पन्न अवस्था का प्रतिनिधित्व करता है, जो पूर्व परिकल्पनाओं के विपरीत है। इसके अतिरिक्त, अब यह ज्ञात हो गया है कि माइकोप्लाज़्मा अनिवार्य रूप से मेजबान से जुड़े जीवाणु में कई जीनोम संकोचन का एक उदाहरण है। अन्य उदाहरण रिकेटसिआ , बुचनेरा एफिडिकोला और बोरेलिया बर्गडोरफेरी हैं।[14] ऐसी प्रजातियों में छोटे जीनोम का आकार कुछ विशिष्टताओं से जुड़ा होता है, जैसे पॉलीपेप्टाइड अनुक्रमों का तेजी से विकास और जीनोम में कम जीसी सामग्री। असंबंधित जीवाणुओं में इन गुणों के अभिसारी विकास से पता चलता है कि एक मेजबान के साथ एक अविकल्पी जुड़ाव जीनोम में कमी को बढ़ावा देता है।[14]

यह देखते हुए कि लगभग सभी पूरी तरह से अनुक्रमित जीवाणु जीनोमों में से 80% से अधिक में बरकरार ओआरएफ होते हैं, और जीन की लंबाई ~ 1 केबी प्रति जीन पर लगभग स्थिर होती है, यह अनुमान लगाया जाता है कि छोटे जीनोम में कुछ चयापचय क्षमताएं होती हैं। जबकि मुक्त-जीवित जीवाणु, जैसे कि ई. कोलाई, साल्मोनेला प्रजाति, या बेसिलस प्रजाति, सामान्य रूप से उनके डीएनए में 1500 से 6000 प्रोटीन एन्कोडेड होते हैं, अनिवार्य रूप से रोगजनक जीवाणु में अक्सर 500 से 1000 ऐसे प्रोटीन होते हैं।[14]

एक उम्मीदवार स्पष्टीकरण यह है कि कम जीनोम उन जीनों को बनाए रखता है जो सेलुलर विकास और डीएनए प्रतिकृति से संबंधित महत्वपूर्ण प्रक्रियाओं के लिए आवश्यक हैं, इसके अतिरिक्त उन जीनों के अतिरिक्त जो जीवाणु के पारिस्थितिक स्थान में जीवित रहने के लिए आवश्यक हैं। हालाँकि, अनुक्रम आंकडे इस परिकल्पना का खंडन करता है। यूबैक्टीरिया के बीच सार्वभौमिक ऑर्थोलॉग के सेट में प्रत्येक जीनोम का केवल 15% सम्मिलित है। इस प्रकार, प्रत्येक वंश ने छोटे आकार के लिए एक अलग विकासपरक मार्ग अपनाया है। क्योंकि सार्वभौमिक सेलुलर प्रक्रियाओं के लिए 80 से अधिक जीनों की आवश्यकता होती है, जीनों में भिन्नता का अर्थ है कि समान कार्यों को गैर-समरूप जीनों के शोषण से प्राप्त किया जा सकता है।[14]

मेजबान पर निर्भर जीवाणु मेजबान के कोशिका द्रव्य या ऊतक से चयापचय के लिए आवश्यक कई यौगिकों को सुरक्षित करने में सक्षम हैं। बदले में, वे अपने स्वयं के बायोसिंथेटिक रास्ते और संबंधित जीनों को त्याग सकते हैं। यह निष्कासन कई विशिष्ट जीन हानियों की व्याख्या करता है। उदाहरण के लिए, रिकेट्सिया प्रजाति, जो अपने मेजबान से विशिष्ट ऊर्जा सब्सट्रेट पर निर्भर करती है, ने अपने कई मूल ऊर्जा चयापचय जीनों को खो दिया है। इसी तरह, अधिकांश छोटे जीनोमों ने अपने अमीनो एसिड जैवसंश्लेषण जीन खो दिए हैं, क्योंकि ये इसके बजाय मेजबान में पाए जाते हैं। एक अपवाद बुचनरा है, जो एफिड्स का एक अविकल्पी मातृ संचरित सहजीवन है। यह महत्वपूर्ण अमीनो एसिड के जैवसंश्लेषण के लिए 54 जीनों को बरकरार रखता है, लेकिन अब उन अमीनो एसिड के लिए रास्ते नहीं हैं जो मेजबान संश्लेषित कर सकते हैं। न्यूक्लियोटाइड जैव संश्लेषण के रास्ते कई कम जीनोम से चले गए हैं। विशिष्ट अनुकूलन के माध्यम से विकसित होने वाले उपचय मार्ग विशेष जीनोम में बने रहते हैं।[14]

परिकल्पना है कि अप्रयुक्त जीन को अंततः हटा दिया जाता है, यह स्पष्ट नहीं करता है कि हटाए गए जीनों में से कई वास्तव में रोगज़नक़ों को बाध्य करने में सहायक क्यों रहेंगे। उदाहरण के लिए, प्रतिकृति, प्रतिलेखन (आनुवांशिकी), और अनुवाद (आनुवांशिकी) सहित सार्वभौमिक सेलुलर प्रक्रियाओं में सम्मिलित उत्पादों के लिए कई जीन कोडोन समाप्त हो गए हैं। यहां तक ​​कि आनुवंशिक पुनर्संयोजन और मरम्मत का समर्थन करने वाले जीन भी हर छोटे जीनोम से हटा दिए जाते हैं। इसके अतिरिक्त, छोटे जीनोम में कम टीआरएनए होते हैं, जो कई अमीनो एसिड के लिए एक का उपयोग करते हैं। तो, एक एकल कोडन जोड़े कई कोडन के साथ, जो संभावित रूप से कम-से-इष्टतम अनुवाद मशीनरी का उत्पादन करता है। यह अज्ञात है कि बाध्य इंट्रासेल्युलर रोगजनकों को कम टीआरएनए और कम डीएनए मरम्मत एंजाइमों को बनाए रखने से लाभ होगा।[14]

विचार करने के लिए एक अन्य कारक जनसंख्या में परिवर्तन है जो एक अनिवार्य रूप से रोगजनक जीवन के विकास के अनुरूप है। जीवन शैली में इस तरह के बदलाव के परिणामस्वरूप वंश के आनुवंशिक आबादी के आकार में कमी आती है, क्योंकि कब्जे के लिए यजमानों की एक सीमित संख्या होती है। इस अनुवांशिक बहाव के परिणामस्वरूप उत्परिवर्तनों का निर्धारण हो सकता है जो अन्यथा फायदेमंद जीन को निष्क्रिय कर देते हैं, या अन्यथा जीन उत्पादों की दक्षता कम कर सकते हैं। इसलिए, न केवल अनुपयोगी जीन नष्ट हो जाएंगे (जैसा कि एक बार जीवाणु मेजबान निर्भरता में बसने के बाद म्यूटेशन उन्हें बाधित कर देता है), लेकिन यदि अनुवांशिक बहाव अप्रभावी शुद्धिकरण चयन को लागू करता है तो लाभकारी जीन भी खो सकते हैं।[14]

स्वतंत्र सेलुलर विकास और प्रतिकृति के लिए सार्वभौमिक रूप से बनाए गए जीनों की संख्या छोटी और अपर्याप्त है, ताकि छोटी जीनोम प्रजातियों को अलग-अलग जीनों के माध्यम से इस तरह की उपलब्धि प्राप्त करनी पड़े। यह आंशिक रूप से गैर-ऑर्थोलॉगस जीन विस्थापन के माध्यम से किया जाता है। अर्थात्, एक जीन की भूमिका को दूसरे जीन द्वारा प्रतिस्थापित किया जाता है जो समान कार्य करता है। पैतृक, बड़े जीनोम के भीतर अतिरेक समाप्त हो जाता है। वंशज छोटी जीनोम सामग्री क्रोमोसोमल विलोपन की सामग्री पर निर्भर करती है जो जीनोम में कमी के शुरुआती चरणों में होती है।[14]

एम. जननांग के बहुत छोटे जीनोम में डिस्पेंसेबल जीन होते हैं। एक अध्ययन में जिसमें इस जीव के एकल जीन को ट्रांसपोज़न-मध्यस्थ उत्परिवर्तन का उपयोग करके निष्क्रिय किया गया था, इसके 484 ओआरजी में से कम से कम 129 को विकास के लिए आवश्यक नहीं था। एम. जननांग की तुलना में बहुत छोटा जीनोम इसलिए संभव है।[14]


दोहरीकरण समय

एक सिद्धांत भविष्यवाणी करता है कि तेजी से प्रतिकृति सुनिश्चित करने के लिए जीनोम के आकार पर एक चयनात्मक दबाव के कारण जीवाणुओं के छोटे जीनोम होते हैं। सिद्धांत तार्किक आधार पर आधारित है कि छोटे जीवाणु जीनोम को दोहराने में कम समय लगेगा। इसके बाद, बेहतर फिटनेस के कारण छोटे जीनोम को प्राथमिकता से चुना जाएगा। मीरा एट अल द्वारा किया गया एक अध्ययन। जीनोम आकार और दोहरीकरण समय के बीच कोई संबंध नहीं होने का संकेत दिया।[15] आंकडे इंगित करता है कि जीवाणु जीनोम के छोटे आकार के लिए चयन एक उपयुक्त स्पष्टीकरण नहीं है। फिर भी, कई शोधकर्ता मानते हैं कि छोटे जीनोम आकार को बनाए रखने के लिए जीवाणु पर कुछ चयनात्मक दबाव होता है।

विलोपन अभिनति

चयन (जीव विज्ञान) विकास में सम्मिलित एक प्रक्रिया है। दो अन्य प्रमुख प्रक्रियाएं (म्यूटेशन और जेनेटिक बहाव) विभिन्न प्रकार के जीवाणुओं के जीनोम आकार के लिए जिम्मेदार हो सकती हैं। मीरा एट अल द्वारा किया गया एक अध्ययन। जीवाणु छद्म जीन में सम्मिलन और विलोपन के आकार की जांच की। परिणामों ने संकेत दिया कि उत्परिवर्तन विलोपन जीन स्थानांतरण या जीन दोहराव के अभाव में जीवाणु में सम्मिलन से बड़ा होता है।[15]क्षैतिज या पार्श्व जीन स्थानांतरण और जीन दोहराव के कारण सम्मिलन में बड़ी मात्रा में आनुवंशिक सामग्री का स्थानांतरण सम्मिलित होता है। इन प्रक्रियाओं की कमी को मानते हुए, चयनात्मक बाधा के अभाव में जीनोम आकार में कम हो जाएगा। एक विलोपन अभिनति के साक्ष्य मुक्त-जीवित जीवाणु, वैकल्पिक परजीवी और हाल ही में व्युत्पन्न परजीवी और परजीवी और सहजीवन के संबंधित जीनोम आकार में सम्मिलित हैं।

मुक्त-जीवित जीवाणु में बड़े जनसंख्या-आकार होते हैं और जीन स्थानांतरण के लिए अधिक अवसर के अधीन होते हैं। इस प्रकार, चयन हानिकारक अनुक्रमों को हटाने के लिए मुक्त-जीवित जीवाणुओं पर प्रभावी ढंग से काम कर सकता है जिसके परिणामस्वरूप अपेक्षाकृत कम संख्या में छद्म जीन होते हैं। लगातार, आगे चयनात्मक दबाव स्पष्ट है क्योंकि मुक्त रहने वाले जीवाणुओं को एक मेजबान से स्वतंत्र सभी जीन-उत्पादों का उत्पादन करना चाहिए। यह देखते हुए कि जीन स्थानांतरण के पर्याप्त अवसर हैं और थोड़े से हानिकारक विलोपन के खिलाफ चयनात्मक दबाव हैं, यह सहज है कि मुक्त रहने वाले जीवाणुओं में सभी प्रकार के जीवाणुओं का सबसे बड़ा जीवाणु जीनोम होना चाहिए।

हाल ही में बने परजीवी गंभीर अड़चनों से गुजरते हैं और जीन उत्पाद प्रदान करने के लिए मेजबान वातावरण पर भरोसा कर सकते हैं। जैसे, हाल ही में बने और ऐच्छिक परजीवियों में, विलोपन के खिलाफ चयनात्मक दबाव की कमी के कारण छद्म जीन और ट्रांसपोजेबल तत्वों का संचय होता है। जनसंख्या की अड़चनें जीन स्थानांतरण को कम करती हैं और इस तरह, विलोपन अभिनति परजीवी जीवाणु में जीनोम के आकार में कमी सुनिश्चित करता है।

विलोपन अभिनति के लंबे समय तक प्रभाव के कारण अप्रचलित परजीवी और सहजीवन में सबसे छोटे जीनोम आकार होते हैं। परजीवी जो विशिष्ट निचे पर कब्जा करने के लिए विकसित हुए हैं, वे बहुत अधिक चयनात्मक दबाव के संपर्क में नहीं आते हैं। जैसे, विशिष्ट-विशिष्ट जीवाणु के विकास में आनुवंशिक बहाव हावी है। विलोपन अभिनति के लिए विस्तारित एक्सपोजर सबसे अनावश्यक अनुक्रमों को हटाने को सुनिश्चित करता है। सहजीवन बहुत कम संख्या में होते हैं और किसी भी जीवाणु प्रकार की सबसे गंभीर बाधाओं से गुजरते हैं। एंडोसिम्बायोटिक जीवाणु के लिए जीन स्थानांतरण का लगभग कोई अवसर नहीं है, और इस प्रकार जीनोम संघनन अत्यधिक हो सकता है। अब तक अनुक्रमित किए जाने वाले सबसे छोटे जीवाणु जीनोमों में से एक endosymbiont कार्सोनेला रुडी है।[16] 160 केबीपी पर, कार्सोनेला का जीनोम आज तक जांचे गए जीनोम के सबसे सुव्यवस्थित उदाहरणों में से एक है।

जीनोमिक कमी

आणविक फाईलोजेनेटिक्स ने खुलासा किया है कि 2 एमबी से कम जीनोम के आकार वाले जीवाणुओं का प्रत्येक क्लैड उत्पादकों से बहुत बड़े जीनोम के साथ प्राप्त किया गया था, इस प्रकार इस परिकल्पना का खंडन किया गया है कि जीवाणु छोटे-जीनोम वाले उत्पादकों के क्रमिक दोहरीकरण से विकसित हुए हैं।[17] निल्सन एट अल द्वारा किए गए हाल के अध्ययन। बाध्य जीवाणुओं के जीवाणु जीनोम में कमी की दरों की जांच की। जीवाणु को जीन स्थानांतरण को कम करने के लिए क्रमिक मार्ग में लगातार बाधाओं और बढ़ती कोशिकाओं को पेश करने के लिए सुसंस्कृत किया गया था ताकि एंडोसिम्बायोटिक जीवाणु की स्थितियों की नकल की जा सके। आंकडे ने भविष्यवाणी की कि एक दिन की पीढ़ी का समय प्रदर्शित करने वाले जीवाणु 50,000 वर्षों (अपेक्षाकृत कम विकासपरक समय अवधि) में 1,000 केबीपी तक खो देते हैं। इसके अतिरिक्त, मिथाइल-निर्देशित डीएनए बेमेल मरम्मत (एमएमआर) प्रणाली के लिए आवश्यक जीन को हटाने के बाद, यह दिखाया गया था कि जीवाणु जीनोम आकार में कमी की दर में 50 गुना तक की वृद्धि हुई है।[18] इन परिणामों से संकेत मिलता है कि जीनोम के आकार में कमी अपेक्षाकृत तेजी से हो सकती है, और कुछ जीनों की हानि जीवाणु जीनोम संघनन की प्रक्रिया को तेज कर सकती है।

इसका मतलब यह नहीं है कि सभी जीवाणु जीनोम आकार और जटिलता में कमी कर रहे हैं। जबकि कई प्रकार के जीवाणु पैतृक अवस्था से जीनोम के आकार में कम हो गए हैं, फिर भी बड़ी संख्या में जीवाणु हैं जो पैतृक राज्यों में जीनोम के आकार को बनाए रखते हैं या बढ़ाते हैं।[8]मुक्त-जीवित जीवाणु विशाल जनसंख्या आकार, तेजी से पीढ़ी के समय और जीन स्थानांतरण के लिए अपेक्षाकृत उच्च क्षमता का अनुभव करते हैं। जबकि विलोपन अभिनति अनावश्यक अनुक्रमों को हटाने के लिए जाता है, चयन मुक्त-जीवित जीवाणुओं के बीच महत्वपूर्ण रूप से कार्य कर सकता है जिसके परिणामस्वरूप नए जीन और प्रक्रियाओं का विकास होता है।

क्षैतिज जीन स्थानांतरण

यूकेरियोट्स के विपरीत, जो मुख्य रूप से मौजूदा आनुवंशिक जानकारी के संशोधन के माध्यम से विकसित होते हैं, जीवाणु ने क्षैतिज जीन स्थानांतरण द्वारा अपनी आनुवंशिक विविधता का एक बड़ा प्रतिशत प्राप्त कर लिया है। यह अपेक्षाकृत गतिशील जीनोम बनाता है, जिसमें डीएनए को क्रोमोसोम में डाला और हटाया जा सकता है।[19] जीवाणु में उनके चयापचय गुणों, सेलुलर संरचनाओं और जीवन शैली में अधिक भिन्नता होती है, जिसे केवल बिंदु उत्परिवर्तन के कारण ही माना जा सकता है। उदाहरण के लिए, साल्मोनेला एंटरिका से ई. कोलाई को अलग करने वाले किसी भी फेनोटाइपिक लक्षण को बिंदु उत्परिवर्तन के लिए जिम्मेदार नहीं ठहराया जा सकता है। इसके विपरीत, सबूत बताते हैं कि क्षैतिज जीन स्थानांतरण ने कई जीवाणुओं के विविधीकरण और जाति उद्भवन को बढ़ावा दिया है।[19]

डीएनए अनुक्रम सूचना के माध्यम से क्षैतिज जीन स्थानांतरण का अक्सर पता लगाया जाता है। इस तंत्र द्वारा प्राप्त डीएनए खंड अक्सर संबंधित प्रजातियों के बीच एक संकीर्ण फ़ाइलोजेनेटिक वितरण प्रकट करते हैं। इसके अतिरिक्त, ये क्षेत्र कभी-कभी कर से जीनों के लिए एक अप्रत्याशित स्तर की समानता प्रदर्शित करते हैं जिन्हें अपेक्षाकृत भिन्न माना जाता है।[19]

यद्यपि जीन की तुलना और फाईलोजेनेटिक अध्ययन क्षैतिज जीन स्थानांतरण की जांच करने में सहायक होते हैं, जीन के डीएनए अनुक्रम एक जीनोम के भीतर उनके मूल और वंश के और भी रहस्योद्घाटन करते हैं। समग्र जीसी सामग्री में जीवाणु प्रजातियां व्यापक रूप से भिन्न होती हैं, हालांकि किसी एक प्रजाति के जीनोम में जीन आधार संरचना, कोडन उपयोग के पैटर्न और डाय- और ट्राइन्यूक्लियोटाइड्स की आवृत्तियों के संबंध में लगभग समान हैं। नतीजतन, पार्श्व हस्तांतरण के माध्यम से प्राप्त किए गए अनुक्रमों को उनकी विशेषताओं के माध्यम से पहचाना जा सकता है, जो कि दाता के बने हुए हैं। उदाहरण के लिए, कई एस एंटरिका जीन जो ई. कोलाई में सम्मिलित नहीं हैं, उनकी आधार रचनाएं हैं जो पूरे गुणसूत्र की कुल 52% जीसी सामग्री से भिन्न हैं। इस प्रजाति के भीतर, कुछ वंशों में डीएनए के एक मेगाबेस से अधिक है जो अन्य वंशों में सम्मिलित नहीं है। इन वंशावली-विशिष्ट अनुक्रमों की आधार रचनाओं का अर्थ है कि इनमें से कम से कम आधे अनुक्रमों को पार्श्व हस्तांतरण के माध्यम से कैप्चर किया गया था। इसके अतिरिक्त, क्षैतिज रूप से प्राप्त जीनों से सटे क्षेत्रों में अक्सर ट्रांसलोकेबल तत्वों के अवशेष होते हैं, प्लाज्मिड के मूल स्थानान्तरण होते हैं, या फेज इंटिग्रेस के ज्ञात लगाव स्थल होते हैं।[19]

कुछ प्रजातियों में, बाद में स्थानांतरित जीनों का एक बड़ा हिस्सा प्लास्मिड-, फेज- या ट्रांसपोसॉन-संबंधित अनुक्रमों से उत्पन्न होता है।[19]

यद्यपि अनुक्रम-आधारित विधियाँ जीवाणु में क्षैतिज जीन स्थानांतरण की व्यापकता को प्रकट करती हैं, परिणाम इस तंत्र की भयावहता को कम करके आंकते हैं, क्योंकि दाताओं से प्राप्त अनुक्रम जिनकी अनुक्रम विशेषताएँ प्राप्तकर्ता के समान हैं, पता लगाने से बचेंगे।[19]

पूरी तरह से अनुक्रमित जीनोम की तुलना इस बात की पुष्टि करती है कि जीवाणु गुणसूत्र पैतृक और बाद में प्राप्त अनुक्रमों के मिश्रण हैं। हाइपरथर्मोफिलिक यूबैक्टीरिया एक्विफेक्स एओलिकस और थर्मोटोगा मैरिटिमा में से प्रत्येक में कई जीन हैं जो प्रोटीन अनुक्रम में थर्मोफिलिक आर्किया में होमोलॉग्स के समान हैं। थर्मोटोगा के 1,877 ओआरएफ में से 24% और एक्विफेक्स के 1,512 ओआरएफ में से 16% एक आर्कियल प्रोटीन से उच्च मेल दिखाते हैं, जबकि ई. कोलाई और बी. सबटिलिस जैसे मेसोफाइल में जीन का अनुपात बहुत कम होता है जो आर्कियल होमोलॉग की तरह होते हैं।[19]


पार्श्व स्थानांतरण के तंत्र

क्षैतिज जीन स्थानांतरण के कारण नई क्षमताओं की उत्पत्ति की तीन आवश्यकताएं हैं। सबसे पहले, प्राप्तकर्ता सेल द्वारा दाता डीएनए को स्वीकार करने के लिए एक संभावित मार्ग सम्मिलित होना चाहिए। इसके अतिरिक्त, प्राप्त अनुक्रम को शेष जीनोम के साथ एकीकृत किया जाना चाहिए। अंत में, इन एकीकृत जीनों को प्राप्तकर्ता जीवाणु जीव को लाभ पहुंचाना चाहिए। पहले दो चरणों को तीन तंत्रों के माध्यम से प्राप्त किया जा सकता है: परिवर्तन, पारगमन और संयुग्मन।[19]

परिवर्तन में पर्यावरण से नामित डीएनए का उत्थान सम्मिलित है। परिवर्तन के माध्यम से, डीएनए को दूर से संबंधित जीवों के बीच संचरित किया जा सकता है। कुछ जीवाणु प्रजातियां, जैसे हेमोफिलस इन्फ्लुएंजा और नेइसेरिया गोनोरहोई, डीएनए को स्वीकार करने के लिए लगातार सक्षम हैं। बेसिलस सुबटिलिस और स्ट्रैपटोकोकस निमोनिया जैसी अन्य प्रजातियां सक्षम हो जाती हैं, जब वे अपने जीवनचक्र में एक विशेष चरण में प्रवेश करती हैं।

एन. गोनोरिया और एच. इन्फ्लुएंजा में रूपांतरण केवल तभी प्रभावी होता है जब प्राप्तकर्ता जीनोम (5'-GCCGTCTGAA-3' और 5'-AAGTGCGGT-3'. क्रमशः) में विशिष्ट मान्यता अनुक्रम पाए जाते हैं। हालांकि कुछ अपटेक सीक्वेंस के अस्तित्व से संबंधित प्रजातियों के बीच परिवर्तन क्षमता में सुधार होता है, कई स्वाभाविक रूप से सक्षम जीवाणु प्रजातियां, जैसे कि बी। सबटिलिस और एस। निमोनिया, अनुक्रम वरीयता प्रदर्शित नहीं करते हैं।

एक बैक्टीरियोफेज द्वारा नए जीन को जीवाणु में पेश किया जा सकता है जो सामान्यीकृत ट्रांसडक्शन या विशेष ट्रांसडक्शन के माध्यम से एक दाता के भीतर दोहराया गया है। एक घटना में प्रेषित किए जा सकने वाले डीएनए की मात्रा फेज कैप्सिड के आकार से विवश है (हालांकि ऊपरी सीमा लगभग 100 किलोबेस है)। जबकि फेज पर्यावरण में असंख्य हैं, सूक्ष्मजीवों की श्रेणी जिसे ट्रांसड्यूस किया जा सकता है, बैक्टीरियोफेज द्वारा रिसेप्टर मान्यता पर निर्भर करता है। ट्रांसडक्शन के लिए दाता और प्राप्तकर्ता दोनों कोशिकाओं को समय या स्थान में एक साथ उपस्थित होने की आवश्यकता नहीं होती है। फेज-एन्कोडेड प्रोटीन दोनों प्राप्तकर्ता साइटोप्लाज्म में डीएनए के हस्तांतरण में मध्यस्थता करते हैं और क्रोमोसोम में डीएनए के एकीकरण में सहायता करते हैं।[19]

संयुग्मन में दाता और प्राप्तकर्ता कोशिकाओं के बीच शारीरिक संपर्क सम्मिलित होता है और डोमेन के बीच जीन के हस्तांतरण में मध्यस्थता करने में सक्षम होता है, जैसे जीवाणु और खमीर के बीच। डीएनए को दाता से प्राप्तकर्ता तक या तो स्व-संचारणीय या गतिशील प्लास्मिड द्वारा प्रेषित किया जाता है। संयुग्मन क्रोमोसोम में एकीकृत प्लास्मिड द्वारा क्रोमोसोमल अनुक्रमों के हस्तांतरण में मध्यस्थता कर सकता है।

जीवाणु के बीच जीन स्थानांतरण में मध्यस्थता करने वाले तंत्रों की भीड़ के बावजूद, प्रक्रिया की सफलता की गारंटी नहीं है जब तक कि प्राप्तकर्ता में प्राप्त अनुक्रम को स्थिर रूप से बनाए नहीं रखा जाता है। कई प्रक्रियाओं में से एक के माध्यम से डीएनए एकीकरण को बनाए रखा जा सकता है। एक एपिसोड के रूप में दृढ़ता है, दूसरा सजातीय पुनर्संयोजन है, और फिर भी दूसरा लकी डबल-स्ट्रैंड ब्रेक रिपेयर के माध्यम से नाजायज निगमन है।[19]


पार्श्व जीन स्थानांतरण के माध्यम से पेश किए गए लक्षण

रोगाणुरोधी प्रतिरोध जीन एक जीव को अपने पारिस्थितिक स्थान को विकसित करने की क्षमता प्रदान करते हैं, क्योंकि यह अब पहले के घातक यौगिकों की उपस्थिति में जीवित रह सकता है। ऐसे जीनों को प्राप्त करने से अर्जित जीवाणु के लाभ के रूप में समय- और स्थान-स्वतंत्र होते हैं, जो अनुक्रम अत्यधिक मोबाइल होते हैं उन्हें चुना जाता है। टैक्सा के बीच प्लास्मिड अपेक्षाकृत गतिमान होते हैं और सबसे लगातार तरीका है जिसके द्वारा जीवाणु एंटीबायोटिक प्रतिरोध जीन प्राप्त करते हैं।

एक रोगजनक जीवन शैली को अपनाने से अक्सर एक जीव के पारिस्थितिक स्थान में एक मौलिक बदलाव होता है। रोगजनक जीवों के अनियमित फाइलोजेनेटिक वितरण का अर्थ है कि जीवाणु विषाणु उपस्थिति, या जीन की प्राप्ति का एक परिणाम है, जो अविरल रूपों में गायब हैं। इसके प्रमाण में रोगजनक शिगेला और यर्सिनिया में बड़े 'विषाक्तता' प्लास्मिड की खोज के साथ-साथ अन्य प्रजातियों के जीनों के प्रायोगिक जोखिम के माध्यम से ई. कोलाई पर रोगजनक गुण प्रदान करने की क्षमता सम्मिलित है।[19]


कम्प्यूटर निर्मित रूप

अप्रैल 2019 में, ETH ज्यूरिख के वैज्ञानिकों ने दुनिया के पहले जीवाणु जीनोम के निर्माण की सूचना दी, जिसका नाम Caulobacter crescentus|Caulobacter ethensis-2.0 है, जो पूरी तरह से एक कंप्यूटर द्वारा बनाया गया है, हालांकि C. एथेंसिस-2.0 का एक संबंधित व्यवहार्य रूप अभी तक सम्मिलित नहीं है।[20][21]


यह भी देखें

संदर्भ

  1. McCutcheon, J. P.; Von Dohlen, C. D. (2011). "माइलबग्स के नेस्टेड सिम्बायोसिस में एक अन्योन्याश्रित मेटाबोलिक पैचवर्क". Current Biology. 21 (16): 1366–1372. doi:10.1016/j.cub.2011.06.051. PMC 3169327. PMID 21835622.
  2. Van Leuven, JT; Meister, RC; Simon, C; McCutcheon, JP (11 September 2014). "एक बैक्टीरियल एंडोसिम्बियोनेट में सहानुभूति की प्रजाति एक की कार्यक्षमता के साथ दो जीनोम में परिणाम देती है।". Cell. 158 (6): 1270–80. doi:10.1016/j.cell.2014.07.047. PMID 25175626.
  3. Han, K; Li, ZF; Peng, R; Zhu, LP; Zhou, T; Wang, LG; Li, SG; Zhang, XB; Hu, W; Wu, ZH; Qin, N; Li, YZ (2013). "एक क्षारीय परिवेश से एक सोरांगियम सेलुलोसम जीनोम का असाधारण विस्तार।". Scientific Reports. 3: 2101. Bibcode:2013NatSR...3E2101H. doi:10.1038/srep02101. PMC 3696898. PMID 23812535.
  4. Hou, Yubo; Lin, Senjie (2009). "Distinct Gene Number-Genome Size Relationships for Eukaryotes and Non-Eukaryotes: Gene Content Estimation for Dinoflagellate Genomes". PLOS ONE. 4 (9): e6978. Bibcode:2009PLoSO...4.6978H. doi:10.1371/journal.pone.0006978. PMC 2737104. PMID 19750009.
  5. 5.0 5.1 5.2 5.3 5.4 5.5 Land, Miriam; Hauser, Loren; Jun, Se-Ran; Nookaew, Intawat; Leuze, Michael R.; Ahn, Tae-Hyuk; Karpinets, Tatiana; Lund, Ole; Kora, Guruprased; Wassenaar, Trudy; Poudel, Suresh; Ussery, David W. (2015). "Insights from 20 years of bacterial genome sequencing". Functional & Integrative Genomics. 15 (2): 141–161. doi:10.1007/s10142-015-0433-4. PMC 4361730. PMID 25722247. CC BY icon.svg This article contains quotations from this source, which is available under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.
  6. 6.0 6.1 Gregory, T. R. (2005). "Synergy between sequence and size in Large-scale genomics". Nature Reviews Genetics. 6 (9): 699–708. doi:10.1038/nrg1674. PMID 16151375. S2CID 24237594.
  7. 7.0 7.1 Cole, S. T.; Eiglmeier, K.; Parkhill, J.; James, K. D.; Thomson, N. R.; Wheeler, P. R.; Honoré, N.; Garnier, T.; Churcher, C.; Harris, D.; Mungall, K.; Basham, D.; Brown, D.; Chillingworth, T.; Connor, R.; Davies, R. M.; Devlin, K.; Duthoy, S.; Feltwell, T.; Fraser, A.; Hamlin, N.; Holroyd, S.; Hornsby, T.; Jagels, K.; Lacroix, C.; MacLean, J.; Moule, S.; Murphy, L.; Oliver, K.; Quail, M. A. (2001). "Massive gene decay in the leprosy bacillus". Nature. 409 (6823): 1007–1011. Bibcode:2001Natur.409.1007C. doi:10.1038/35059006. PMID 11234002. S2CID 4307207.
  8. 8.0 8.1 Ochman, H. (2005). "सिकुड़ने पर जीनोम". Proceedings of the National Academy of Sciences. 102 (34): 11959–11960. Bibcode:2005PNAS..10211959O. doi:10.1073/pnas.0505863102. PMC 1189353. PMID 16105941.
  9. Gregory, T. Ryan (2005). The evolution of the genome. Burlington, MA: Elsevier Academic. ISBN 0123014638.
  10. 10.0 10.1 Koonin, E. V. (2009). "जीनोम आर्किटेक्चर का विकास". The International Journal of Biochemistry & Cell Biology. 41 (2): 298–306. doi:10.1016/j.biocel.2008.09.015. PMC 3272702. PMID 18929678.
  11. Kuo, C. -H.; Moran, N. A.; Ochman, H. (2009). "जीवाणु जीनोम जटिलता के लिए अनुवांशिक बहाव के परिणाम". Genome Research. 19 (8): 1450–1454. doi:10.1101/gr.091785.109. PMC 2720180. PMID 19502381.
  12. Ochman, H.; Davalos, L. M. (2006). "बैक्टीरियल जीनोम की प्रकृति और गतिशीलता". Science. 311 (5768): 1730–1733. Bibcode:2006Sci...311.1730O. doi:10.1126/science.1119966. PMID 16556833. S2CID 26707775.
  13. Parks, DH; Chuvochina, M; Chaumeil, PA; Rinke, C; Mussig, AJ; Hugenholtz, P (September 2020). "बैक्टीरिया और आर्किया के लिए एक पूर्ण डोमेन-टू-प्रजाति वर्गीकरण।". Nature Biotechnology. 38 (9): 1079–1086. bioRxiv 10.1101/771964. doi:10.1038/s41587-020-0501-8. PMID 32341564. S2CID 216560589.
  14. 14.0 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 Moran, Nancy A. (2002). "माइक्रोबियल न्यूनतमवाद". Cell. 108 (5): 583–586. doi:10.1016/S0092-8674(02)00665-7. PMID 11893328.
  15. 15.0 15.1 Mira, A.; Ochman, H.; Moran, N. A. (2001). "Deletional bias and the evolution of bacterial genomes". Trends in Genetics. 17 (10): 589–596. doi:10.1016/S0168-9525(01)02447-7. PMID 11585665.
  16. Nakabachi, A.; Yamashita, A.; Toh, H.; Ishikawa, H.; Dunbar, H. E.; Moran, N. A.; Hattori, M. (2006). "The 160-Kilobase Genome of the Bacterial Endosymbiont Carsonella". Science. 314 (5797): 267. doi:10.1126/science.1134196. PMID 17038615. S2CID 44570539.
  17. Ochman, H. (2005). "सिकुड़ने पर जीनोम". Proceedings of the National Academy of Sciences. 102 (34): 11959–11960. Bibcode:2005PNAS..10211959O. doi:10.1073/pnas.0505863102. PMC 1189353. PMID 16105941.
  18. Nilsson, A. I.; Koskiniemi, S.; Eriksson, S.; Kugelberg, E.; Hinton, J. C.; Andersson, D. I. (2005). "Bacterial genome size reduction by experimental evolution". Proceedings of the National Academy of Sciences. 102 (34): 12112–12116. Bibcode:2005PNAS..10212112N. doi:10.1073/pnas.0503654102. PMC 1189319. PMID 16099836.
  19. 19.00 19.01 19.02 19.03 19.04 19.05 19.06 19.07 19.08 19.09 19.10 Ochman, Howard; Lawrence, Jeffrey G.; Groisman, Eduardo A. (2000). "पार्श्व जीन स्थानांतरण और जीवाणु नवाचार की प्रकृति". Nature. 405 (6784): 299–304. Bibcode:2000Natur.405..299O. doi:10.1038/35012500. PMID 10830951. S2CID 85739173.
  20. ETH Zurich (1 April 2019). "पूरी तरह से कंप्यूटर से बनाया गया पहला जीवाणु जीनोम". EurekAlert!. Retrieved 2 April 2019.
  21. Venetz, Jonathan E.; et al. (1 April 2019). "डिजाइन लचीलापन और जैविक कार्यक्षमता प्राप्त करने के लिए एक जीवाणु जीनोम का रासायनिक संश्लेषण पुनर्लेखन". Proceedings of the National Academy of Sciences of the United States of America. 116 (16): 8070–8079. Bibcode:2019PNAS..116.8070V. doi:10.1073/pnas.1818259116. PMC 6475421. PMID 30936302.