Difference between revisions of "उद्देश्य (बीजगणितीय ज्यामिति)"

From alpha
Jump to navigation Jump to search
Line 1: Line 1:
{{Short description|Structure for unifying cohomology theories}}
{{Short description|Structure for unifying cohomology theories}}
{{Other uses|Motive (disambiguation)}}
{{Other uses|Motive (disambiguation)}}
[[बीजगणितीय ज्यामिति]] में, उद्देश्य (या कभी-कभी रूपांकन, फ्रांसीसी भाषा के उपयोग के बाद) 1960 के दशक में [[अलेक्जेंडर ग्रोथेंडिक]] द्वारा प्रस्तावित एक सिद्धांत है, जो समान व्यवहार वाले कोहोमोलॉजी सिद्धांतों जैसे कि एकवचन कोहोमोलॉजी, डी राम कोहोमोलॉजी, ईटेल कोहोमोलॉजी और क्रिस्टलीय कोहोमोलॉजी के विशाल सरणी को एकीकृत करता है। दार्शनिक रूप से, एक "मोटिफ़" विभिन्न प्रकार का "कोहोमोलॉजी सार" है।
[[बीजगणितीय ज्यामिति]] में, मकसद (या कभी-कभी रूपांकन, फ्रांसीसी भाषा के उपयोग के बाद) 1960 के दशक में [[अलेक्जेंडर ग्रोथेंडिक]] द्वारा प्रस्तावित एक सिद्धांत है, जो समान व्यवहार वाले कोहोमोलॉजी सिद्धांतों जैसे कि एकवचन कोहोमोलॉजी, डी राम कोहोमोलॉजी, ईटेल कोहोमोलॉजी और क्रिस्टलीय कोहोमोलॉजी के विशाल सरणी को एकीकृत करता है। दार्शनिक रूप से, एक "मोटिफ़" विभिन्न प्रकार का "कोहोमोलॉजी सार" है।


चिकनी प्रक्षेप्य किस्मों के लिए ग्रोथेंडिक के सूत्रीकरण में, एक उद्देश्य एक ट्रिपल है <math>(X, p, m)</math>, जहां एक्स एक सहज प्रक्षेप्य विविधता है, <math>p: X \vdash X</math> एक निष्क्रिय [[पत्राचार (बीजगणितीय ज्यामिति)]] है, और एम एक [[पूर्णांक]] है, हालांकि, इस तरह के ट्रिपल में ग्रोथेंडिक की शुद्ध उद्देश्यों की [[श्रेणी (गणित)]] के संदर्भ के बाहर लगभग कोई जानकारी नहीं होती है, जहां से एक रूपवाद <math>(X, p, m)</math> को <math>(Y, q, n)</math> डिग्री के पत्राचार द्वारा दिया जाता है <math>n-m</math>. पियरे डेलिग्ने द्वारा ले ग्रुप फोंडामेंटल डे ला ड्रोइट प्रोजेक्टिव मोइन्स ट्रोइस पॉइंट्स में एक अधिक वस्तु-केंद्रित दृष्टिकोण अपनाया गया है। उस लेख में, एक उद्देश्य एक "प्राप्ति की प्रणाली" है - अर्थात, एक टपल
चिकनी प्रक्षेप्य विविधता के लिए ग्रोथेंडिक के सूत्रीकरण में, एक मकसद एक ट्रिपल है <math>(X, p, m)</math>, जहां एक्स एक सहज प्रक्षेप्य विविधता है, <math>p: X \vdash X</math> एक निष्क्रिय [[पत्राचार (बीजगणितीय ज्यामिति)]] है, और एम एक [[पूर्णांक]] है, हालांकि, इस तरह के ट्रिपल में ग्रोथेंडिक की शुद्ध मकसदों की [[श्रेणी (गणित)]] के संदर्भ के बाहर लगभग कोई जानकारी नहीं होती है, जहां से एक रूपवाद <math>(X, p, m)</math> को <math>(Y, q, n)</math> डिग्री के पत्राचार द्वारा दिया जाता है <math>n-m</math>. पियरे डेलिग्ने द्वारा ले ग्रुप फोंडामेंटल डे ला ड्रोइट प्रोजेक्टिव मोइन्स ट्रोइस पॉइंट्स में एक अधिक वस्तु-केंद्रित दृष्टिकोण अपनाया गया है। उस लेख में, एक मकसद एक "प्राप्ति की प्रणाली" है - अर्थात, एक टपल


:<math> \left (M_B, M_{\mathrm{DR}}, M_{\mathbb{A}^f}, M_{\operatorname{cris},p}, \operatorname{comp}_{\mathrm{DR},B}, \operatorname{comp}_{\mathbb{A}^f, B}, \operatorname{comp}_{\operatorname{cris} p,\mathrm{DR}}, W, F_\infty, F, \phi, \phi_p \right )</math>
:<math> \left (M_B, M_{\mathrm{DR}}, M_{\mathbb{A}^f}, M_{\operatorname{cris},p}, \operatorname{comp}_{\mathrm{DR},B}, \operatorname{comp}_{\mathbb{A}^f, B}, \operatorname{comp}_{\operatorname{cris} p,\mathrm{DR}}, W, F_\infty, F, \phi, \phi_p \right )</math>
Line 15: Line 15:


:<math>\operatorname{comp}_{\mathrm{DR},B}, \operatorname{comp}_{\mathbb{A}^f, B}, \operatorname{comp}_{\operatorname{cris} p, \mathrm{DR}}</math>
:<math>\operatorname{comp}_{\mathrm{DR},B}, \operatorname{comp}_{\mathbb{A}^f, B}, \operatorname{comp}_{\operatorname{cris} p, \mathrm{DR}}</math>
इन मॉड्यूलों  के स्पष्ट आधार परिवर्तनों, निस्पंदन क्रिया के बीच <math>W, F</math>, ए <math>\operatorname{Gal}(\overline{\Q}, \Q)</math>-कार्य <math>\phi</math> पर <math>M_{\mathbb{A}^f},</math> और एक "फ्रोबेनियस" ऑटोमोर्फिज्म <math>\phi_p</math> का <math>M_{\operatorname{cris},p}</math>. यह डेटा एक सुचारु प्रक्षेप्य के सह-समरूपता पर आधारित है <math>\Q</math>-विविधता , संरचनाएं और अनुकूलता वे स्वीकार करते है, और एक विचार देते है कि किस प्रकार की जानकारी में एक उद्देश्य निहित है।
इन मॉड्यूलों  के स्पष्ट आधार परिवर्तनों, निस्पंदन क्रिया के बीच <math>W, F</math>, ए <math>\operatorname{Gal}(\overline{\Q}, \Q)</math>-कार्य <math>\phi</math> पर <math>M_{\mathbb{A}^f},</math> और एक "फ्रोबेनियस" ऑटोमोर्फिज्म <math>\phi_p</math> का <math>M_{\operatorname{cris},p}</math>. यह डेटा एक सुचारु प्रक्षेप्य के सह-समरूपता पर आधारित है <math>\Q</math>-विविधता , संरचनाएं और अनुकूलता वे स्वीकार करते है, और एक विचार देते है कि किस प्रकार की जानकारी में एक मकसद निहित है।


== परिचय ==
== परिचय ==
उद्देश्यों के सिद्धांत को मूल रूप से बेट्टी कोहोमोलॉजी, डी राम कोहोमोलॉजी, एल-एडिक कोहोमोलॉजी और क्रिस्टलीय कोहोमोलॉजी सहित कोहोलॉजी सिद्धांतों की तेजी से बढ़ती सरणी को एकजुट करने के प्रयास के रूप में अनुमानित किया गया था। सामान्य आशा यह है कि समीकरण जैसे हों
मकसदों के सिद्धांत को मूल रूप से बेट्टी कोहोमोलॉजी, डी राम कोहोमोलॉजी, एल-एडिक कोहोमोलॉजी और क्रिस्टलीय कोहोमोलॉजी सहित कोहोलॉजी सिद्धांतों की तेजी से बढ़ती सरणी को एकजुट करने के प्रयास के रूप में अनुमानित किया गया था। सामान्य आशा यह है कि समीकरण जैसे हों
* [प्रक्षेप्य रेखा] = [रेखा] + [बिंदु]
* [प्रक्षेप्य रेखा] = [रेखा] + [बिंदु]
* [प्रक्षेप्य तल] = [तल] + [रेखा] + [बिंदु]
* [प्रक्षेप्य तल] = [तल] + [रेखा] + [बिंदु]
इसे गहरे अर्थ के साथ तेजी से ठोस गणितीय आधार पर रखा जा सकता है। बिल्कुल, उपरोक्त समीकरण पहले से ही कई अर्थों में सत्य माने जाते हैं, जैसे कि [[सीडब्ल्यू-कॉम्प्लेक्स]] के अर्थ में जहां "+" संलग्न कोशिकाओं से मेल खाता है, और विभिन्न कोहोमोलॉजी सिद्धांतों के अर्थ में, जहां "+" से मेल खाता है प्रत्यक्ष योग।
इसे गहरे अर्थ के साथ तेजी से ठोस गणितीय आधार पर रखा जा सकता है। बिल्कुल, उपरोक्त समीकरण पहले से ही कई अर्थों में सत्य माने जाते हैं, जैसे कि [[सीडब्ल्यू-कॉम्प्लेक्स]] के अर्थ में जहां "+" संलग्न कोशिकाओं से मेल खाता है, और विभिन्न कोहोमोलॉजी सिद्धांतों के अर्थ में, जहां "+" से मेल खाता है प्रत्यक्ष योग।


दूसरे दृष्टिकोण से, उद्देश्य किस्मों पर तर्कसंगत कार्यों से लेकर किस्मों पर विभाजक से लेकर किस्मों के चाउ समूहों तक सामान्यीकरण के क्रम को जारी रखते हैं। सामान्यीकरण एक से अधिक दिशाओं में होता है, क्योंकि उद्देश्यों को तर्कसंगत तुल्यता की तुलना में अधिक प्रकार की तुल्यता के संबंध में माना जा सकता है। स्वीकार्य तुल्यताएँ [[पर्याप्त तुल्यता संबंध]] की परिभाषा द्वारा दी जाती हैं।
दूसरे दृष्टिकोण से, मकसद विविधता पर तर्कसंगत कार्यों से लेकर विविधता पर विभाजक से लेकर विविधता के चाउ समूहों तक सामान्यीकरण के क्रम को जारी रखते हैं। सामान्यीकरण एक से अधिक दिशाओं में होता है, क्योंकि मकसदों को तर्कसंगत तुल्यता की तुलना में अधिक प्रकार की तुल्यता के संबंध में माना जा सकता है। स्वीकार्य तुल्यताएँ [[पर्याप्त तुल्यता संबंध]] की परिभाषा द्वारा दी जाती हैं।


== शुद्ध उद्देश्यों की परिभाषा ==
== शुद्ध मकसदों की परिभाषा ==
शुद्ध उद्देश्यों की श्रेणी (गणित) प्रायः तीन चरणों में आगे बढ़ती है। नीचे हम चाउ मोटिव्स के उद्देश्य का वर्णन करते हैं <math>\operatorname{Chow}(k)</math>, जहां k कोई क्षेत्र है।
शुद्ध मकसदों की श्रेणी (गणित) प्रायः तीन चरणों में आगे बढ़ती है। नीचे हम चाउ मोटिव्स के मकसद का वर्णन करते हैं <math>\operatorname{Chow}(k)</math>, जहां k कोई क्षेत्र है।


=== पहला चरण: (डिग्री 0) पत्राचार की श्रेणी, कोर(के) ===
=== पहला चरण: (डिग्री 0) पत्राचार की श्रेणी, कोर(के) ===
की वस्तुएं <math>\operatorname{Corr}(k)</math> K के ऊपर केवल चिकनी प्रक्षेप्य किस्में हैं। रूपवाद पत्राचार हैं। वे किस्मों की आकृतियों का सामान्यीकरण करते हैं <math>X \to Y</math>, जिसे उनके ग्राफ़ के साथ जोड़ा जा सकता है <math>X \times Y</math>, निश्चित आयामी [[चाउ रिंग]] पर <math>X \times Y</math>.
की वस्तुएं <math>\operatorname{Corr}(k)</math> K के ऊपर केवल चिकनी प्रक्षेप्य किस्में हैं। रूपवाद पत्राचार हैं। वे विविधता की आकृतियों का सामान्यीकरण करते हैं <math>X \to Y</math>, जिसे उनके ग्राफ़ के साथ जोड़ा जा सकता है <math>X \times Y</math>, निश्चित आयामी [[चाउ रिंग]] पर <math>X \times Y</math>.


मनमाने ढंग से डिग्री के पत्राचार का वर्णन करना उपयोगी होगा, हालांकि इसमें रूपवाद है <math>\operatorname{Corr}(k)</math> डिग्री 0 के अनुरूप हैं। विस्तार से, मान लें कि X और Y  चिकनी प्रक्षेप्य किस्में हैं और जुड़े हुए घटकों में X के अपघटन पर विचार करें:
मनमाने ढंग से डिग्री के पत्राचार का वर्णन करना उपयोगी होगा, हालांकि इसमें रूपवाद है <math>\operatorname{Corr}(k)</math> डिग्री 0 के अनुरूप हैं। विस्तार से, मान लें कि X और Y  चिकनी प्रक्षेप्य किस्में हैं और जुड़े हुए घटकों में X के अपघटन पर विचार करें:
Line 57: Line 57:




=== दूसरा चरण: शुद्ध प्रभावी चाउ उद्देश्यों की श्रेणी, चाउ<sup>प्रभाव</sup>(k)===
=== दूसरा चरण: शुद्ध प्रभावी चाउ मकसदों की श्रेणी, चाउ<sup>प्रभाव</sup>(k)===


उद्देश्यों में परिवर्तन छद्म-विनिमेय समूह लिफाफा लेकर किया जाता है <math>\operatorname{Corr}(k)</math>:
मकसदों में परिवर्तन छद्म-विनिमेय समूह लिफाफा लेकर किया जाता है <math>\operatorname{Corr}(k)</math>:


:<math>\operatorname{Chow}^\operatorname{eff}(k) := Split(\operatorname{Corr}(k))</math>.
:<math>\operatorname{Chow}^\operatorname{eff}(k) := Split(\operatorname{Corr}(k))</math>.


दूसरे शब्दों में, प्रभावी चाउ उद्देश्य चिकनी प्रक्षेप्य किस्मों एक्स और निष्क्रिय पत्राचार α: X ⊢ X के जोड़े हैं, और आकारिकी एक निश्चित प्रकार के पत्राचार के हैं:
दूसरे शब्दों में, प्रभावी चाउ मकसद चिकनी प्रक्षेप्य विविधता एक्स और निष्क्रिय पत्राचार α: X ⊢ X के जोड़े हैं, और आकारिकी एक निश्चित प्रकार के पत्राचार के हैं:


:<math>\operatorname{Ob} \left (\operatorname{Chow}^\operatorname{eff}(k) \right ) := \{ (X, \alpha) \mid (\alpha : X \vdash X) \in \operatorname{Corr}(k) \mbox{ such that } \alpha \circ \alpha = \alpha \}.</math>
:<math>\operatorname{Ob} \left (\operatorname{Chow}^\operatorname{eff}(k) \right ) := \{ (X, \alpha) \mid (\alpha : X \vdash X) \in \operatorname{Corr}(k) \mbox{ such that } \alpha \circ \alpha = \alpha \}.</math>
Line 77: Line 77:
\end{cases}</math>,
\end{cases}</math>,


जहां Δ<sub>''X''</sub> := [आईडी<sub>X</sub>] X × X के विकर्ण को दर्शाता है, एक अवच्छेदक है। उद्देश्य [X] को अधिकतर किस्म X से जुड़ा उद्देश्य कहा जाता है।
जहां Δ<sub>''X''</sub> := [आईडी<sub>X</sub>] X × X के विकर्ण को दर्शाता है, एक अवच्छेदक है। मकसद [X] को अधिकतर किस्म X से जुड़ा मकसद कहा जाता है।


जैसी कि अभिप्रेत, चौ<sup>eff</sup>(k) एक छद्म-विनिमेय समूह है। प्रभावी उद्देश्यों का प्रत्यक्ष योग किसके द्वारा दिया जाता है?
जैसी कि अभिप्रेत, चौ<sup>eff</sup>(k) एक छद्म-विनिमेय समूह है। प्रभावी मकसदों का प्रत्यक्ष योग किसके द्वारा दिया जाता है?


:<math>([X], \alpha) \oplus ([Y], \beta) := \left ( \left [X \coprod Y \right ], \alpha + \beta \right ),</math>
:<math>([X], \alpha) \oplus ([Y], \beta) := \left ( \left [X \coprod Y \right ], \alpha + \beta \right ),</math>
प्रभावी उद्देश्यों की प्रदिश गुणनफल को परिभाषित किया गया है
प्रभावी मकसदों की प्रदिश गुणनफल को परिभाषित किया गया है


:<math>([X], \alpha) \otimes ([Y], \beta) := (X \times Y, \pi_X^{*}\alpha \cdot \pi_Y^{*}\beta),</math>
:<math>([X], \alpha) \otimes ([Y], \beta) := (X \times Y, \pi_X^{*}\alpha \cdot \pi_Y^{*}\beta),</math>
Line 88: Line 88:


:<math>\pi_X : (X \times Y) \times (X \times Y) \to X \times X, \quad \text{and} \quad \pi_Y : (X \times Y) \times (X \times Y) \to Y \times Y.</math>
:<math>\pi_X : (X \times Y) \times (X \times Y) \to X \times X, \quad \text{and} \quad \pi_Y : (X \times Y) \times (X \times Y) \to Y \times Y.</math>
'''आकारिकी''' के टेंसर उत्पाद को भी परिभाषित किया जा सकता है। चलो एफ<sub>1</sub> : (एक्स<sub>1</sub>, <sub>1</sub>) → (तथा<sub>1</sub>, बी<sub>1</sub>) और एफ<sub>2</sub> : (एक्स<sub>2</sub>, <sub>2</sub>) → (तथा<sub>2</sub>, बी<sub>2</sub>) उद्देश्यों की आकृतियाँ बनें। फिर चलो γ<sub>1</sub> ∈ {{sup|*}}(एक्स<sub>1</sub> ×य<sub>1</sub>) और γ<sub>2</sub> ∈ {{sup|*}}(एक्स<sub>2</sub> ×य<sub>2</sub>) एफ के प्रतिनिधि बनें<sub>1</sub>और एफ<sub>2</sub>. तब
आकारिकी के प्रदिश गुणनफल को भी परिभाषित किया जा सकता है। होने देना ''f''<sub>1</sub> : (''X''<sub>1</sub>, ''α''<sub>1</sub>) → (''Y''<sub>1</sub>, ''β''<sub>1</sub>) और ''f''<sub>2</sub> : (''X''<sub>2</sub>, ''α''<sub>2</sub>) → (''Y''<sub>2</sub>, ''β''<sub>2</sub>) मकसदों की आकृतियाँ बनें। तो करने दें γ<sub>1</sub> ∈ ''A''{{sup|*}}(''X''<sub>1</sub> × ''Y''<sub>1</sub>) और γ<sub>2</sub> ∈ ''A''{{sup|*}}(''X''<sub>2</sub> × ''Y''<sub>2</sub>) ''f<sub>1</sub>''  और ''f<sub>2</sub>'' के प्रतिनिधि बनें। तब


:<math>f_1 \otimes f_2 : (X_1, \alpha_1) \otimes (X_2, \alpha_2) \vdash (Y_1, \beta_1) \otimes (Y_2, \beta_2), \qquad f_1 \otimes f_2 := \pi^{*}_1 \gamma_1 \cdot \pi^{*}_2 \gamma_2</math>,
:<math>f_1 \otimes f_2 : (X_1, \alpha_1) \otimes (X_2, \alpha_2) \vdash (Y_1, \beta_1) \otimes (Y_2, \beta_2), \qquad f_1 \otimes f_2 := \pi^{*}_1 \gamma_1 \cdot \pi^{*}_2 \gamma_2</math>,


जहां पी<sub>i</sub>: एक्स<sub>1</sub> × एक्स<sub>2</sub> ×य<sub>1</sub> ×य<sub>2</sub> → एक्स<sub>i</sub>×य<sub>i</sub>अनुमान हैं.
जहां ''π<sub>i</sub>'' : ''X''<sub>1</sub> × ''X''<sub>2</sub> × ''Y''<sub>1</sub> × ''Y''<sub>2</sub> → ''X<sub>i</sub>'' × ''Y<sub>i</sub>'' अनुमान हैं.


=== तीसरा चरण: शुद्ध चाउ उद्देश्यों की श्रेणी, चाउ(के) ===
=== तीसरा चरण: शुद्ध चाउ मकसदों की श्रेणी, चाउ(के) ===
उद्देश्यों की ओर आगे बढ़ने के लिए, हम चाउ के लिए स्पष्ट सहायक हैं<sup>eff</sup>(k) एक उद्देश्य का औपचारिक व्युत्क्रम (टेंसर उत्पाद के संबंध में) जिसे लेफ्सचेट्ज़ उद्देश्य कहा जाता है। इसका प्रभाव यह होता है कि उद्देश्य जोड़े के बजाय तीन हो जाते हैं। [[लेफ्शेट्ज़ मकसद|लेफ्शेट्ज़ उद्देश्य]] एल है
मकसदों की ओर आगे बढ़ने के लिए, हम चाउ<sup>eff</sup>(k) के साथ एक मकसद का औपचारिक व्युत्क्रम (प्रदिश गुणनफल के संबंध में) जोड़ते हैं जिसे लेफ्सचेत्ज़ मकसद कहा जाता है। इसका प्रभाव यह होता है कि मकसद जोड़े के बजाय तीन हो जाते हैं। [[लेफ्शेट्ज़ मकसद]] ''L'' है


:<math>L := (\mathbb{P}^1, \lambda), \qquad \lambda := pt \times \mathbb{P}^1 \in A^1(\mathbb{P}^1 \times \mathbb{P}^1)</math>.
:<math>L := (\mathbb{P}^1, \lambda), \qquad \lambda := pt \times \mathbb{P}^1 \in A^1(\mathbb{P}^1 \times \mathbb{P}^1)</math>.


यदि हम उद्देश्य 1 को, जिसे ''तुच्छ टेट उद्देश्य'' कहा जाता है, 1 := h(Spec(''k'')) द्वारा परिभाषित करते हैं, तो सुरुचिपूर्ण समीकरण
यदि हम मकसद 1 को परिभाषित करते हैं, जिसे ''तुच्छ टेट मकसद'' कहा जाता है, 1 := h(Spec(''k'')) द्वारा, तो सुरुचिपूर्ण समीकरण


:<math>[\mathbb{P}^1] = \mathbf{1} \oplus L</math>
:<math>[\mathbb{P}^1] = \mathbf{1} \oplus L</math>
Line 105: Line 105:


:<math>\mathbf{1} \cong \left (\mathbb{P}^1, \mathbb{P}^1 \times \operatorname{pt} \right ).</math>
:<math>\mathbf{1} \cong \left (\mathbb{P}^1, \mathbb{P}^1 \times \operatorname{pt} \right ).</math>
लेफ्शेट्ज़ उद्देश्य के टेंसर व्युत्क्रम को [[टेट मकसद|टेट उद्देश्य]], टी: = एल के रूप में जाना जाता है<sup>−1</sup>. फिर हम शुद्ध चाउ उद्देश्यों की श्रेणी को परिभाषित करते हैं
लेफ्शेट्ज़ मकसद के प्रदिश गुणनफल को [[टेट मकसद|टेट मकसद के रूप में जाना जाता है]], T: = L−1. फिर हम शुद्ध चाउ मकसदों की श्रेणी को परिभाषित करते हैं


:<math>\operatorname{Chow}(k) := \operatorname{Chow}^\operatorname{eff}(k)[T]</math>.
:<math>\operatorname{Chow}(k) := \operatorname{Chow}^\operatorname{eff}(k)[T]</math>.


एक उद्देश्य तो एक ट्रिपल है
एक मकसद तो एक ट्रिपल है


:<math>(X \in \operatorname{SmProj}(k), p: X \vdash X, n \in \Z )</math>
:<math>(X \in \operatorname{SmProj}(k), p: X \vdash X, n \in \Z )</math>
Line 117: Line 117:
और आकारिकी की संरचना पत्राचार की संरचना से आती है।
और आकारिकी की संरचना पत्राचार की संरचना से आती है।


इरादे के मुताबिक़, <math>\operatorname{Chow}(k)</math> एक [[कठोर श्रेणी]] छद्म-एबेलियन श्रेणी है।
उद्देश के अनुसार, <math>\operatorname{Chow}(k)</math> एक [[कठोर श्रेणी]] छद्म-विनिमेय समूह श्रेणी है।


=== अन्य प्रकार के उद्देश्य ===
=== अन्य प्रकार के मकसद ===
एक प्रतिच्छेदन उत्पाद को परिभाषित करने के लिए, चक्रों को गतिशील होना चाहिए ताकि हम उन्हें सामान्य स्थिति में प्रतिच्छेद कर सकें। एक उपयुक्त पर्याप्त तुल्यता संबंध का चयन यह गारंटी देगा कि चक्रों की प्रत्येक जोड़ी में सामान्य स्थिति में एक समतुल्य जोड़ी होती है जिसे हम प्रतिच्छेद कर सकते हैं। चाउ समूहों को तर्कसंगत तुल्यता का उपयोग करके परिभाषित किया गया है, लेकिन अन्य तुल्यताएं संभव हैं, और प्रत्येक एक अलग प्रकार के उद्देश्य को परिभाषित करता है। सबसे मजबूत से लेकर सबसे कमजोर तक, समतुल्यता के उदाहरण हैं
एक प्रतिच्छेदन उत्पाद को परिभाषित करने के लिए, चक्रों को "चलने योग्य" होना चाहिए ताकि हम उन्हें सामान्य स्थिति में प्रतिच्छेद कर सकें। चक्रों पर एक उपयुक्त तुल्यता संबंध चुनने से यह बंधक होगी कि चक्रों की प्रत्येक जोड़ी में सामान्य स्थिति में एक समतुल्य जोड़ी होती है जिसे हम प्रतिच्छेद कर सकते हैं। चाउ समूहों को तर्कसंगत तुल्यता का उपयोग करके परिभाषित किया गया है, लेकिन अन्य तुल्यताएं संभव हैं, और प्रत्येक एक अलग प्रकार के मकसद को परिभाषित करता है। सबसे मजबूत से लेकर सबसे कमजोर तक, समतुल्यता के उदाहरण हैं
* तर्कसंगत तुल्यता
* तर्कसंगत तुल्यता
* बीजीय तुल्यता
* बीजीय तुल्यता
* स्मैश-निलपोटेंस तुल्यता (कभी-कभी वोएवोडस्की तुल्यता भी कहा जाता है)
* तोड़-फोड़ तुल्यता (कभी-कभी वोएवोडस्की तुल्यता भी कहा जाता है)
* समजात तुल्यता (वेइल कोहोमोलॉजी के अर्थ में)
* समजात तुल्यता (वेइल कोहोमोलॉजी के अर्थ में)
*संख्यात्मक तुल्यता
*संख्यात्मक तुल्यता
साहित्य कभी-कभी हर प्रकार के शुद्ध उद्देश्य को चाउ उद्देश्य कहता है, इस मामले में बीजगणितीय तुल्यता के संबंध में एक उद्देश्य को चाउ उद्देश्य मोडुलो बीजगणितीय तुल्यता कहा जाएगा।
साहित्य कभी-कभी हर प्रकार के शुद्ध मकसद को चाउ मकसद कहता है, इस स्थिति में बीजगणितीय तुल्यता के संबंध में एक मकसद को चाउ मकसद मोडुलो बीजगणितीय तुल्यता कहा जाएगा।


== मिश्रित उद्देश्य ==
== मिश्रित मकसद ==
एक निश्चित आधार फ़ील्ड k के लिए, 'मिश्रित उद्देश्यों' की श्रेणी एक अनुमानित एबेलियन [[टेंसर श्रेणी]] है <math>MM(k)</math>, एक कॉन्ट्रावेरिएंट फ़ैक्टर के साथ
एक निश्चित आधार क्षेत्र k के लिए, 'मिश्रित मकसदों' की श्रेणी एक अनुमानित विनिमेय समूह [[टेंसर श्रेणी]] है <math>MM(k)</math>, एक विरोधाभासी फ़ैक्टर के साथ


:<math>\operatorname{Var}(k) \to MM(k)</math>
:<math>\operatorname{Var}(k) \to MM(k)</math>
सभी किस्मों पर मूल्य लेना (सिर्फ सहज प्रक्षेपी नहीं, जैसा कि शुद्ध उद्देश्यों के मामले में था)। यह ऐसा होना चाहिए कि मोटिविक कोहोमोलॉजी द्वारा परिभाषित किया गया हो
सभी विविधता पर मूल्य लेना (सिर्फ सहज प्रक्षेपी नहीं, जैसा कि शुद्ध मकसदों के स्थिति में था)। यह ऐसा होना चाहिए कि प्रेरक कोहोमोलॉजी द्वारा परिभाषित किया गया हो


:<math>\operatorname{Ext}^*_{MM}(1, ?)</math>
:<math>\operatorname{Ext}^*_{MM}(1, ?)</math>
बीजगणितीय के-सिद्धांत द्वारा भविष्यवाणी की गई भविष्यवाणी के साथ मेल खाता है, और इसमें उपयुक्त अर्थ (और अन्य गुणों) में चाउ उद्देश्यों की श्रेणी शामिल है। ऐसी श्रेणी के अस्तित्व का अनुमान [[अलेक्जेंडर मैं बेटा हो]] ने लगाया था।
बीजगणितीय के-सिद्धांत द्वारा भविष्यवाणी की गई भविष्यवाणी के साथ मेल खाता है, और इसमें उपयुक्त अर्थ (और अन्य गुणों) में चाउ मकसदों की श्रेणी सम्मिलित है। ऐसी श्रेणी के अस्तित्व का अनुमान [[अलेक्जेंडर मैं बेटा हो|अलेक्जेंडर]] बेइलिंसन ने लगाया था।


ऐसी श्रेणी के निर्माण के बजाय, डेलिग्ने द्वारा यह प्रस्तावित किया गया था कि पहले एक श्रेणी डीएम का निर्माण किया जाए जिसमें [[व्युत्पन्न श्रेणी]] के लिए अपेक्षित गुण हों।
ऐसी श्रेणी के निर्माण के अतिरिक्त, डेलिग्ने द्वारा यह प्रस्तावित किया गया था कि पहले एक श्रेणी DM का निर्माण किया जाए जिसमें [[व्युत्पन्न श्रेणी]] के लिए अपेक्षित गुण हों।


:<math>D^b(MM(k))</math>.
:<math>D^b(MM(k))</math>.


डीएम से एमएम वापस प्राप्त करना तब एक (अनुमानात्मक) प्रेरक [[त्रिकोणीय श्रेणी]] | टी-संरचना द्वारा पूरा किया जाएगा।
DM से MM वापस प्राप्त करना एक (अनुमानात्मक) प्रेरक टी-संरचना द्वारा पूरा किया जाएगा।


सिद्धांत की वर्तमान स्थिति यह है कि हमारे पास एक उपयुक्त श्रेणी डीएम है। यह श्रेणी पहले से ही अनुप्रयोगों में उपयोगी है। [[व्लादिमीर वोएवोडस्की]] के [[फील्ड्स मेडल]]-विजेता [[मिल्नोर अनुमान]] का प्रमाण इन उद्देश्यों को एक प्रमुख घटक के रूप में उपयोग करता है।
सिद्धांत की वर्तमान स्थिति यह है कि हमारे पास एक उपयुक्त श्रेणी DM है। यह श्रेणी पहले से ही अनुप्रयोगों में उपयोगी है। [[व्लादिमीर वोएवोडस्की]] के [[फील्ड्स मेडल]]-विजेता [[मिल्नोर अनुमान]] का प्रमाण इन मकसदों को एक प्रमुख घटक के रूप में उपयोग करता है।


हनामुरा, लेविन और वोवोडस्की के कारण अलग-अलग परिभाषाएँ हैं। वे ज्यादातर मामलों में समकक्ष माने जाते हैं और हम वोएवोडस्की की परिभाषा नीचे देंगे। श्रेणी में चाउ मोटिव्स को पूर्ण उपश्रेणी के रूप में शामिल किया गया है और यह सही मोटिविक कोहोलॉजी देता है। हालाँकि, वोएवोडस्की यह भी दर्शाता है कि (अभिन्न गुणांकों के साथ) यह एक प्रेरक टी-संरचना को स्वीकार नहीं करता है।
हनामुरा, लेविन और वोवोडस्की के कारण अलग-अलग परिभाषाएँ हैं। वे ज्यादातर स्थिति में समकक्ष माने जाते हैं और हम वोएवोडस्की की परिभाषा नीचे देंगे। श्रेणी में चाउ मोटिव्स को पूर्ण उपश्रेणी के रूप में सम्मिलित किया गया है और यह "सही" प्रेरक कोहोलॉजी देता है। हालाँकि, वोएवोडस्की यह भी दर्शाता है कि (अभिन्न गुणांकों के साथ) यह एक प्रेरक टी-संरचना को स्वीकार नहीं करता है।


=== ज्यामितीय मिश्रित उद्देश्य ===
=== ज्यामितीय मिश्रित मकसद ===


==== संकेतन ====
==== संकेतन ====
यहां हम एक फ़ील्ड ठीक करेंगे {{mvar|k}}विशेषता का {{val|0}} और जाने <math>A =\Q,\Z</math> हमारी गुणांक वलय बनें। तय करना <math>\mathcal{Var}/k</math> अर्ध-प्रक्षेपी किस्मों की श्रेणी के रूप में {{mvar|k}} परिमित प्रकार की अलग-अलग योजनाएँ हैं। हम भी देंगे <math>\mathcal{Sm}/k</math> चिकनी किस्मों की उपश्रेणी बनें।
यहां हम विशेषता {{val|0}} का एक क्षेत्र {{mvar|k}} तय करेंगे और जाने देंगे <math>A =\Q,\Z</math> हमारा गुणांक वलय हो। तय करेंगे <math>\mathcal{Var}/k</math> जैसा कि {{mvar|k}} से अधिक अर्ध-प्रक्षेपी विविधता की श्रेणी में परिमित प्रकार की अलग-अलग योजनाएं हैं। हम भी देंगे <math>\mathcal{Sm}/k</math> चिकनी विविधता की उपश्रेणी हो।


==== पत्राचार के साथ [[चिकनी किस्म]]ें ====
==== पत्राचार के साथ [[चिकनी किस्म|चिकनी विविधता]] ====
एक सहज विविधता दी गई है {{mvar|X}} और एक बीजगणितीय किस्म {{mvar|Y}} एक [[अभिन्न योजना]] को बंद उपयोजना कहें <math>W \subset X \times Y</math> जो कि परिमित है {{mvar|X}} और के एक घटक पर विशेषण {{mvar|Y}} से एक प्रमुख पत्राचार {{mvar|X}} को {{mvar|Y}}. फिर, हम प्राइम पत्राचार का सेट ले सकते हैं {{mvar|X}} को {{mvar|Y}} और एक मुफ़्त का निर्माण करें {{mvar|A}}-मापांक <math>C_A(X,Y)</math>. इसके तत्वों को परिमित संगतता कहा जाता है। फिर, हम एक योगात्मक श्रेणी बना सकते हैं <math>\mathcal{SmCor}</math> जिनकी वस्तुएं चिकनी किस्में हैं और आकारिकी चिकनी पत्राचार द्वारा दी गई हैं। इस परिभाषा का एकमात्र गैर-तुच्छ हिस्सा यह तथ्य है कि हमें रचनाओं का वर्णन करने की आवश्यकता है। ये चाउ रिंग्स के सिद्धांत से पुश-पुल फॉर्मूला द्वारा दिए गए हैं।
एक सहज विविधता {{mvar|X}} और एक विविधता {{mvar|Y}} को देखते हुए एक अभिन्न बंद उपयोजना कहते हैं <math>W \subset X \times Y</math> जो {{mvar|X}} के ऊपर परिमित है और {{mvar|Y}} के एक घटक पर विशेषण है। फिर, हम {{mvar|X}} से {{mvar|Y}} तक प्राइम पत्राचार का सेट ले सकते हैं और एक मुफ्त ए-मॉड्यूल का निर्माण कर सकते हैं {{mvar|A}}-मापांक <math>C_A(X,Y)</math>. इसके तत्वों को परिमित संगतता कहा जाता है। फिर, हम एक योगात्मक श्रेणी बना सकते हैं <math>\mathcal{SmCor}</math> जिनकी वस्तुएं चिकनी विविधता हैं और आकारिकी चिकनी पत्राचार द्वारा दी गई हैं। इस "परिभाषा" का एकमात्र गैर-तुच्छ हिस्सा यह तथ्य है कि हमें रचनाओं का वर्णन करने की आवश्यकता है। ये चाउ रिंग्स के सिद्धांत से पुश-पुल फॉर्मूला द्वारा दिए गए हैं।


===== पत्राचार के उदाहरण =====
===== पत्राचार के उदाहरण =====
प्राइम पत्राचार के विशिष्ट उदाहरण ग्राफ़ से आते हैं <math>\Gamma_f \subset X\times Y</math> किस्मों के एक रूपवाद का <math>f:X \to Y</math>.<!-- Explain how to construct hecke correspondences... https://math.stackexchange.com/questions/165973/how-does-one-graduate-from-hecke-operators-to-hecke-correspondences -->
प्राइम पत्राचार के विशिष्ट उदाहरण ग्राफ़ से आते हैं <math>\Gamma_f \subset X\times Y</math> विविधता के एक रूपवाद का <math>f:X \to Y</math>.<!-- Explain how to construct hecke correspondences... https://math.stackexchange.com/questions/165973/how-does-one-graduate-from-hecke-operators-to-hecke-correspondences -->




==== होमोटॉपी श्रेणी का स्थानीयकरण ====
==== होमोटॉपी श्रेणी का स्थानीयकरण ====
यहां से हम होमोटॉपी श्रेणी बना सकते हैं <math>K^b(\mathcal{SmCor})</math> सहज पत्राचार के बंधे हुए परिसरों की। यहां चिकनी किस्मों को दर्शाया जाएगा <math>[X]</math>. यदि हम [[किसी श्रेणी का स्थानीयकरण]] करते हैं, तो इस श्रेणी को सबसे छोटी मोटी उपश्रेणी (जिसका अर्थ है कि यह एक्सटेंशन के तहत बंद है) के संबंध में आकारिकी युक्त है
'''यहां''' से हम होमोटॉपी श्रेणी बना सकते हैं <math>K^b(\mathcal{SmCor})</math> सहज पत्राचार के बंधे हुए परिसरों की। यहां चिकनी विविधता को दर्शाया जाएगा <math>[X]</math>. यदि हम [[किसी श्रेणी का स्थानीयकरण]] करते हैं, तो इस श्रेणी को सबसे छोटी मोटी उपश्रेणी (जिसका अर्थ है कि यह एक्सटेंशन के तहत बंद है) के संबंध में आकारिकी युक्त है


:<math>[X\times\mathbb{A}^1] \to [X]</math>
:<math>[X\times\mathbb{A}^1] \to [X]</math>
Line 166: Line 166:


:<math>[U\cap V] \xrightarrow{j_U' + j_V'} [U]\oplus [V] \xrightarrow{j_U - j_V} [X]</math>
:<math>[U\cap V] \xrightarrow{j_U' + j_V'} [U]\oplus [V] \xrightarrow{j_U - j_V} [X]</math>
तब हम प्रभावी ज्यामितीय उद्देश्यों की त्रिकोणीय श्रेणी बना सकते हैं <math>\mathcal{DM}_\text{gm}^\text{eff}(k,A).</math> ध्यान दें कि आकारिकी का पहला वर्ग स्थानीयकरण कर रहा है <math>\mathbb{A}^1</math>-किस्मों की समरूपता जबकि दूसरा मेयर-विएटोरिस अनुक्रम में ज्यामितीय मिश्रित उद्देश्यों की श्रेणी देगा।
तब हम प्रभावी ज्यामितीय मकसदों की त्रिकोणीय श्रेणी बना सकते हैं <math>\mathcal{DM}_\text{gm}^\text{eff}(k,A).</math> ध्यान दें कि आकारिकी का पहला वर्ग स्थानीयकरण कर रहा है <math>\mathbb{A}^1</math>-विविधता की समरूपता जबकि दूसरा मेयर-विएटोरिस अनुक्रम में ज्यामितीय मिश्रित मकसदों की श्रेणी देगा।


साथ ही, ध्यान दें कि इस श्रेणी में किस्मों के उत्पाद द्वारा दी गई एक टेंसर संरचना होती है <math>[X]\otimes[Y] = [X\times Y]</math>.
साथ ही, ध्यान दें कि इस श्रेणी में विविधता के उत्पाद द्वारा दी गई एक टेंसर संरचना होती है <math>[X]\otimes[Y] = [X\times Y]</math>.


==== टेट उद्देश्य को उलटना ====
==== टेट मकसद को उलटना ====
त्रिभुजाकार संरचना का उपयोग करके हम एक त्रिभुज का निर्माण कर सकते हैं
त्रिभुजाकार संरचना का उपयोग करके हम एक त्रिभुज का निर्माण कर सकते हैं


:<math>\mathbb{L} \to [\mathbb{P}^1] \to [\operatorname{Spec}(k)] \xrightarrow{[+1]}</math>
:<math>\mathbb{L} \to [\mathbb{P}^1] \to [\operatorname{Spec}(k)] \xrightarrow{[+1]}</math>
विहित मानचित्र से <math>\mathbb{P}^1 \to \operatorname{Spec}(k)</math>. हम सेट करेंगे <math>A(1) = \mathbb{L}[-2]</math> और इसे टेट उद्देश्य कहें। पुनरावृत्त टेंसर उत्पाद लेने से हमें निर्माण करने की सुविधा मिलती है <math>A(k)</math>. यदि हमारे पास एक प्रभावी ज्यामितीय उद्देश्य है {{mvar|M}} हम जाने <math>M(k)</math> निरूपित <math>M \otimes A(k).</math> इसके अलावा, यह कार्यात्मक रूप से व्यवहार करता है और एक त्रिकोणीय फ़ंक्शनल बनाता है। अंत में, हम ज्यामितीय मिश्रित उद्देश्यों की श्रेणी को परिभाषित कर सकते हैं <math>\mathcal{DM}_{gm}</math> जोड़ियों की श्रेणी के रूप में <math>(M,n)</math> के लिए {{mvar|M}} एक प्रभावी ज्यामितीय मिश्रित उद्देश्य और {{mvar|n}} टेट उद्देश्य द्वारा मोड़ का प्रतिनिधित्व करने वाला एक पूर्णांक। होम-ग्रुप तब कोलिमिट होते हैं
विहित मानचित्र से <math>\mathbb{P}^1 \to \operatorname{Spec}(k)</math>. हम सेट करेंगे <math>A(1) = \mathbb{L}[-2]</math> और इसे टेट मकसद कहें। पुनरावृत्त टेंसर उत्पाद लेने से हमें निर्माण करने की सुविधा मिलती है <math>A(k)</math>. यदि हमारे पास एक प्रभावी ज्यामितीय मकसद है {{mvar|M}} हम जाने <math>M(k)</math> निरूपित <math>M \otimes A(k).</math> इसके अलावा, यह कार्यात्मक रूप से व्यवहार करता है और एक त्रिकोणीय फ़ंक्शनल बनाता है। अंत में, हम ज्यामितीय मिश्रित मकसदों की श्रेणी को परिभाषित कर सकते हैं <math>\mathcal{DM}_{gm}</math> जोड़ियों की श्रेणी के रूप में <math>(M,n)</math> के लिए {{mvar|M}} एक प्रभावी ज्यामितीय मिश्रित मकसद और {{mvar|n}} टेट मकसद द्वारा मोड़ का प्रतिनिधित्व करने वाला एक पूर्णांक। होम-ग्रुप तब कोलिमिट होते हैं


:<math>\operatorname{Hom}_{\mathcal{DM}}((A,n),(B,m))=\lim_{k\geq -n,-m} \operatorname{Hom}_{\mathcal{DM}_{gm}^\operatorname{eff}}(A(k+n),B(k+m))</math>
:<math>\operatorname{Hom}_{\mathcal{DM}}((A,n),(B,m))=\lim_{k\geq -n,-m} \operatorname{Hom}_{\mathcal{DM}_{gm}^\operatorname{eff}}(A(k+n),B(k+m))</math>




== उद्देश्यों के उदाहरण ==
== मकसदों के उदाहरण ==


=== टेट उद्देश्य ===
=== टेट मकसद ===
उद्देश्यों के कई प्राथमिक उदाहरण हैं जो आसानी से उपलब्ध हैं। उनमें से एक टेट उद्देश्य है, जिसे दर्शाया गया है <math>\mathbb{Q}(n)</math>, <math>\mathbb{Z}(n)</math>, या <math>A(n)</math>, उद्देश्यों की श्रेणी के निर्माण में उपयोग किए गए गुणांक पर निर्भर करता है। ये उद्देश्यों की श्रेणी में मौलिक निर्माण खंड हैं क्योंकि वे एबेलियन किस्मों के अलावा अन्य भाग बनाते हैं।
मकसदों के कई प्राथमिक उदाहरण हैं जो आसानी से उपलब्ध हैं। उनमें से एक टेट मकसद है, जिसे दर्शाया गया है <math>\mathbb{Q}(n)</math>, <math>\mathbb{Z}(n)</math>, या <math>A(n)</math>, मकसदों की श्रेणी के निर्माण में उपयोग किए गए गुणांक पर निर्भर करता है। ये मकसदों की श्रेणी में मौलिक निर्माण खंड हैं क्योंकि वे एबेलियन विविधता के अलावा अन्य भाग बनाते हैं।


=== वक्रों के उद्देश्य ===
=== वक्रों के मकसद ===


वक्र के उद्देश्य को सापेक्ष आसानी से स्पष्ट रूप से समझा जा सकता है: उनकी चाउ रिंग उचित है<math display="block">\Z\oplus \text{Pic}(C)</math>किसी भी चिकने प्रक्षेप्य वक्र के लिए <math>C</math>, इसलिए जैकोबियन को उद्देश्यों की श्रेणी में शामिल किया गया है।
वक्र के मकसद को सापेक्ष आसानी से स्पष्ट रूप से समझा जा सकता है: उनकी चाउ रिंग उचित है<math display="block">\Z\oplus \text{Pic}(C)</math>किसी भी चिकने प्रक्षेप्य वक्र के लिए <math>C</math>, इसलिए जैकोबियन को मकसदों की श्रेणी में शामिल किया गया है।


==गैर-विशेषज्ञों के लिए स्पष्टीकरण==
==गैर-विशेषज्ञों के लिए स्पष्टीकरण==
गणित में आमतौर पर लागू की जाने वाली तकनीक एक श्रेणी (गणित) का परिचय देकर एक विशेष संरचना वाली वस्तुओं का अध्ययन करना है जिसका रूपवाद इस संरचना को संरक्षित करता है। तब कोई यह पूछ सकता है कि दी गई दो वस्तुएं समरूपी हैं, और प्रत्येक समरूपता वर्ग में एक विशेष रूप से अच्छे प्रतिनिधि के लिए पूछें। बीजगणितीय किस्मों का वर्गीकरण, अर्थात बीजगणितीय किस्मों के मामले में इस विचार का अनुप्रयोग, वस्तुओं की अत्यधिक गैर-रैखिक संरचना के कारण बहुत मुश्किल है। द्विवार्षिक समरूपता तक की किस्मों का अध्ययन करने के शांत प्रश्न ने [[द्विवार्षिक ज्यामिति]] के क्षेत्र को जन्म दिया है। प्रश्न को संभालने का दूसरा तरीका यह है कि किसी दिए गए प्रकार यह रैखिककरण आमतौर पर कोहोलॉजी के नाम से जाना जाता है।
गणित में आमतौर पर लागू की जाने वाली तकनीक एक श्रेणी (गणित) का परिचय देकर एक विशेष संरचना वाली वस्तुओं का अध्ययन करना है जिसका रूपवाद इस संरचना को संरक्षित करता है। तब कोई यह पूछ सकता है कि दी गई दो वस्तुएं समरूपी हैं, और प्रत्येक समरूपता वर्ग में एक विशेष रूप से अच्छे प्रतिनिधि के लिए पूछें। बीजगणितीय विविधता का वर्गीकरण, अर्थात बीजगणितीय विविधता के स्थिति में इस विचार का अनुप्रयोग, वस्तुओं की अत्यधिक गैर-रैखिक संरचना के कारण बहुत मुश्किल है। द्विवार्षिक समरूपता तक की विविधता का अध्ययन करने के शांत प्रश्न ने [[द्विवार्षिक ज्यामिति]] के क्षेत्र को जन्म दिया है। प्रश्न को संभालने का दूसरा तरीका यह है कि किसी दिए गए प्रकार यह रैखिककरण आमतौर पर कोहोलॉजी के नाम से जाना जाता है।


कई महत्वपूर्ण सह-समरूपता सिद्धांत हैं, जो किस्मों के विभिन्न संरचनात्मक पहलुओं को दर्शाते हैं। (आंशिक रूप से अनुमानित) 'उद्देश्यों का सिद्धांत' बीजगणितीय किस्मों को रैखिक बनाने के लिए एक सार्वभौमिक तरीका खोजने का एक प्रयास है, अर्थात उद्देश्यों को एक सह-समरूपता सिद्धांत प्रदान करना चाहिए जो इन सभी विशेष सह-समरूपताओं का प्रतीक है। उदाहरण के लिए, एक चिकने प्रक्षेप्य [[वक्र]] C का Genus_(गणित), जो वक्र का एक दिलचस्प अपरिवर्तनीय है, एक पूर्णांक है, जिसे C के पहले बेट्टी कोहोमोलॉजी समूह के आयाम से पढ़ा जा सकता है। तो, वक्र का उद्देश्य इसमें वंश की जानकारी होनी चाहिए। बेशक, जीनस एक मोटा अपरिवर्तनीय है, इसलिए सी का उद्देश्य सिर्फ इस संख्या से कहीं अधिक है।
कई महत्वपूर्ण सह-समरूपता सिद्धांत हैं, जो विविधता के विभिन्न संरचनात्मक पहलुओं को दर्शाते हैं। (आंशिक रूप से अनुमानित) 'मकसदों का सिद्धांत' बीजगणितीय विविधता को रैखिक बनाने के लिए एक सार्वभौमिक तरीका खोजने का एक प्रयास है, अर्थात मकसदों को एक सह-समरूपता सिद्धांत प्रदान करना चाहिए जो इन सभी विशेष सह-समरूपताओं का प्रतीक है। उदाहरण के लिए, एक चिकने प्रक्षेप्य [[वक्र]] C का Genus_(गणित), जो वक्र का एक दिलचस्प अपरिवर्तनीय है, एक पूर्णांक है, जिसे C के पहले बेट्टी कोहोमोलॉजी समूह के आयाम से पढ़ा जा सकता है। तो, वक्र का मकसद इसमें वंश की जानकारी होनी चाहिए। बेशक, जीनस एक मोटा अपरिवर्तनीय है, इसलिए सी का मकसद सिर्फ इस संख्या से कहीं अधिक है।


== एक सार्वभौमिक सह-समरूपता की खोज ==
== एक सार्वभौमिक सह-समरूपता की खोज ==
प्रत्येक बीजगणितीय किस्म X का एक संगत उद्देश्य [X] होता है, इसलिए उद्देश्यों के सबसे सरल उदाहरण हैं:
प्रत्येक बीजगणितीय किस्म X का एक संगत मकसद [X] होता है, इसलिए मकसदों के सबसे सरल उदाहरण हैं:


* [बिंदु]
* [बिंदु]
Line 202: Line 202:
ये 'समीकरण' कई स्थितियों में लागू होते हैं, अर्थात् डी राम कोहोमोलॉजी और बेट्टी कोहोमोलॉजी, एटले कोहोमोलॉजी|एल-एडिक कोहोमोलॉजी, किसी भी [[परिमित क्षेत्र]] पर अंकों की संख्या, और स्थानीय ज़ेटा-फ़ंक्शन के लिए [[गुणक संकेतन]] में।
ये 'समीकरण' कई स्थितियों में लागू होते हैं, अर्थात् डी राम कोहोमोलॉजी और बेट्टी कोहोमोलॉजी, एटले कोहोमोलॉजी|एल-एडिक कोहोमोलॉजी, किसी भी [[परिमित क्षेत्र]] पर अंकों की संख्या, और स्थानीय ज़ेटा-फ़ंक्शन के लिए [[गुणक संकेतन]] में।


सामान्य विचार यह है कि किसी भी उचित सह-समरूपता सिद्धांत में अच्छे औपचारिक गुणों के साथ एक 'उद्देश्य' की संरचना समान होती है; विशेष रूप से, किसी भी 'वेइल कोहोमोलॉजी' सिद्धांत में ऐसे गुण होंगे। अलग-अलग वेइल कोहोमोलॉजी सिद्धांत हैं, वे विभिन्न स्थितियों में लागू होते हैं और विभिन्न श्रेणियों में उनके मूल्य होते हैं, और प्रश्न में विविधता के विभिन्न संरचनात्मक पहलुओं को दर्शाते हैं:
सामान्य विचार यह है कि किसी भी उचित सह-समरूपता सिद्धांत में अच्छे औपचारिक गुणों के साथ एक 'मकसद' की संरचना समान होती है; विशेष रूप से, किसी भी 'वेइल कोहोमोलॉजी' सिद्धांत में ऐसे गुण होंगे। अलग-अलग वेइल कोहोमोलॉजी सिद्धांत हैं, वे विभिन्न स्थितियों में लागू होते हैं और विभिन्न श्रेणियों में उनके मूल्य होते हैं, और प्रश्न में विविधता के विभिन्न संरचनात्मक पहलुओं को दर्शाते हैं:


* बेट्टी कोहोमोलॉजी को [[जटिल संख्या]]ओं (उपक्षेत्रों) की किस्मों के लिए परिभाषित किया गया है, इसमें [[पूर्णांकों]] पर परिभाषित होने का लाभ है और यह एक टोपोलॉजिकल अपरिवर्तनीय है
* बेट्टी कोहोमोलॉजी को [[जटिल संख्या]]ओं (उपक्षेत्रों) की विविधता के लिए परिभाषित किया गया है, इसमें [[पूर्णांकों]] पर परिभाषित होने का लाभ है और यह एक टोपोलॉजिकल अपरिवर्तनीय है
* डी राम कोहोमोलॉजी (किस्मों के लिए)। <math>\Complex</math>) [[मिश्रित हॉज संरचना]] के साथ आता है, यह एक विभेदक-ज्यामितीय अपरिवर्तनीय है
* डी राम कोहोमोलॉजी (विविधता के लिए)। <math>\Complex</math>) [[मिश्रित हॉज संरचना]] के साथ आता है, यह एक विभेदक-ज्यामितीय अपरिवर्तनीय है
* étale cohomology|l-एडिक कोहोमोलॉजी (विशेषता ≠ l के किसी भी क्षेत्र पर) में एक विहित गैलोज़ समूह क्रिया है, अर्थात (पूर्ण) गैलोज़ समूह के [[प्रतिनिधित्व (गणित)]] में मान हैं
* étale cohomology|l-एडिक कोहोमोलॉजी (विशेषता ≠ l के किसी भी क्षेत्र पर) में एक विहित गैलोज़ समूह क्रिया है, अर्थात (पूर्ण) गैलोज़ समूह के [[प्रतिनिधित्व (गणित)]] में मान हैं
* क्रिस्टलीय सहसंरचना
* क्रिस्टलीय सहसंरचना
Line 211: Line 211:
ये सभी सह-समरूपता सिद्धांत समान गुण साझा करते हैं, जैसे [[मेयर-विएटोरिस अनुक्रम]]ों का अस्तित्व, होमोटॉपी इनवेरिएंस <math>H^*(X) \cong H^*(X\times \mathbb{A}^1),</math> [[एफ़िन लाइन]] के साथ एक्स का उत्पाद) और अन्य। इसके अलावा, वे तुलनात्मक समरूपता से जुड़े हुए हैं, उदाहरण के लिए बेट्टी कोहोमोलॉजी <math>H^*_{\text{Betti}}(X, \Z/n)</math> एक चिकनी किस्म का एक्स ओवर <math>\Complex</math> परिमित गुणांकों के साथ एल-एडिक कोहोमोलॉजी परिमित गुणांकों के साथ समरूपी है।
ये सभी सह-समरूपता सिद्धांत समान गुण साझा करते हैं, जैसे [[मेयर-विएटोरिस अनुक्रम]]ों का अस्तित्व, होमोटॉपी इनवेरिएंस <math>H^*(X) \cong H^*(X\times \mathbb{A}^1),</math> [[एफ़िन लाइन]] के साथ एक्स का उत्पाद) और अन्य। इसके अलावा, वे तुलनात्मक समरूपता से जुड़े हुए हैं, उदाहरण के लिए बेट्टी कोहोमोलॉजी <math>H^*_{\text{Betti}}(X, \Z/n)</math> एक चिकनी किस्म का एक्स ओवर <math>\Complex</math> परिमित गुणांकों के साथ एल-एडिक कोहोमोलॉजी परिमित गुणांकों के साथ समरूपी है।


'उद्देश्यों का सिद्धांत' एक सार्वभौमिक सिद्धांत खोजने का एक प्रयास है जो इन सभी विशेष सह-समरूपताओं और उनकी संरचनाओं का प्रतीक है और जैसे समीकरणों के लिए एक रूपरेखा प्रदान करता है
'मकसदों का सिद्धांत' एक सार्वभौमिक सिद्धांत खोजने का एक प्रयास है जो इन सभी विशेष सह-समरूपताओं और उनकी संरचनाओं का प्रतीक है और जैसे समीकरणों के लिए एक रूपरेखा प्रदान करता है


:[प्रक्षेप्य रेखा] = [रेखा]+[बिंदु]।
:[प्रक्षेप्य रेखा] = [रेखा]+[बिंदु]।


विशेष रूप से, किसी भी किस्म एक्स के उद्देश्य की गणना सीधे कई वेइल कोहोमोलॉजी सिद्धांतों एच के बारे में सारी जानकारी देती है{{sup|*}}<sub>Betti</sub>(एक्स), एच{{sup|*}}<sub>DR</sub>(एक्स) आदि।
विशेष रूप से, किसी भी किस्म एक्स के मकसद की गणना सीधे कई वेइल कोहोमोलॉजी सिद्धांतों एच के बारे में सारी जानकारी देती है{{sup|*}}<sub>Betti</sub>(एक्स), एच{{sup|*}}<sub>DR</sub>(एक्स) आदि।


ग्रोथेंडिक से शुरुआत करके, लोगों ने कई वर्षों तक इस सिद्धांत को सटीक रूप से परिभाषित करने का प्रयास किया है।
ग्रोथेंडिक से शुरुआत करके, लोगों ने कई वर्षों तक इस सिद्धांत को सटीक रूप से परिभाषित करने का प्रयास किया है।


=== [[मोटिविक कोहोमोलॉजी]] ===
=== [[मोटिविक कोहोमोलॉजी|प्रेरक कोहोमोलॉजी]] ===
मोटिविक कोहोलॉजी का आविष्कार बीजगणितीय के-सिद्धांत के माध्यम से मिश्रित उद्देश्यों के निर्माण से पहले किया गया था। उपरोक्त श्रेणी इसे पुनः परिभाषित करने का एक स्पष्ट तरीका प्रदान करती है
प्रेरक कोहोलॉजी का आविष्कार बीजगणितीय के-सिद्धांत के माध्यम से मिश्रित मकसदों के निर्माण से पहले किया गया था। उपरोक्त श्रेणी इसे पुनः परिभाषित करने का एक स्पष्ट तरीका प्रदान करती है


:<math>H^n(X,m) := H^n(X, \Z(m)) := \operatorname{Hom}_{DM}(X, \Z(m)[n]),</math>
:<math>H^n(X,m) := H^n(X, \Z(m)) := \operatorname{Hom}_{DM}(X, \Z(m)[n]),</math>
जहाँ n और m पूर्णांक हैं और <math>\Z(m)</math> टेट ऑब्जेक्ट की एम-वें टेंसर शक्ति है <math>\Z(1),</math> जो वोएवोडस्की की सेटिंग में जटिल है <math>\mathbb{P}^1 \to \operatorname{pt}</math> -2 द्वारा स्थानांतरित किया गया, और [एन] का मतलब त्रिकोणीय श्रेणी में सामान्य त्रिकोणीय श्रेणी है।
जहाँ n और m पूर्णांक हैं और <math>\Z(m)</math> टेट ऑब्जेक्ट की एम-वें टेंसर शक्ति है <math>\Z(1),</math> जो वोएवोडस्की की सेटिंग में जटिल है <math>\mathbb{P}^1 \to \operatorname{pt}</math> -2 द्वारा स्थानांतरित किया गया, और [एन] का मतलब त्रिकोणीय श्रेणी में सामान्य त्रिकोणीय श्रेणी है।


== उद्देश्यों से संबंधित अनुमान ==
== मकसदों से संबंधित अनुमान ==
[[बीजगणितीय चक्रों पर मानक अनुमान]] सबसे पहले बीजगणितीय चक्रों और वेइल कोहोमोलॉजी सिद्धांतों की परस्पर क्रिया के संदर्भ में तैयार किए गए थे। शुद्ध उद्देश्यों की श्रेणी इन अनुमानों के लिए एक श्रेणीबद्ध रूपरेखा प्रदान करती है।
[[बीजगणितीय चक्रों पर मानक अनुमान]] सबसे पहले बीजगणितीय चक्रों और वेइल कोहोमोलॉजी सिद्धांतों की परस्पर क्रिया के संदर्भ में तैयार किए गए थे। शुद्ध मकसदों की श्रेणी इन अनुमानों के लिए एक श्रेणीबद्ध रूपरेखा प्रदान करती है।


मानक अनुमान आमतौर पर बहुत कठिन माने जाते हैं और सामान्य मामले में खुले होते हैं। बॉम्बिएरी के साथ ग्रोथेंडिक ने मानक अनुमानों को मान्य मानते हुए, वेइल अनुमानों (जो डेलिग्ने द्वारा विभिन्न माध्यमों से सिद्ध किए गए हैं) का एक सशर्त (बहुत छोटा और सुरुचिपूर्ण) प्रमाण तैयार करके प्रेरक दृष्टिकोण की गहराई दिखाई।
मानक अनुमान आमतौर पर बहुत कठिन माने जाते हैं और सामान्य स्थिति में खुले होते हैं। बॉम्बिएरी के साथ ग्रोथेंडिक ने मानक अनुमानों को मान्य मानते हुए, वेइल अनुमानों (जो डेलिग्ने द्वारा विभिन्न माध्यमों से सिद्ध किए गए हैं) का एक सशर्त (बहुत छोटा और सुरुचिपूर्ण) प्रमाण तैयार करके प्रेरक दृष्टिकोण की गहराई दिखाई।


उदाहरण के लिए, कुनेथ मानक अनुमान, जो बीजीय चक्रों के अस्तित्व को बताता है π<sup>i</sup> ⊂ X × X विहित प्रोजेक्टर H को प्रेरित करता है{{sup|*}}(एक्स) → एच<sup>i</sup>(X) ↣ H{{sup|*}}(एक्स) (किसी भी वेइल कोहोमोलॉजी एच के लिए) का तात्पर्य है कि प्रत्येक शुद्ध उद्देश्य एम वजन के वर्गीकृत टुकड़ों में विघटित होता है: एम = ⨁Gr<sub>n</sub>एम. शब्दावली भार चिकनी प्रक्षेप्य किस्मों के डी-रैम कोहोमोलॉजी के समान अपघटन से आता है, [[हॉज सिद्धांत]] देखें।
उदाहरण के लिए, कुनेथ मानक अनुमान, जो बीजीय चक्रों के अस्तित्व को बताता है π<sup>i</sup> ⊂ X × X विहित प्रोजेक्टर H को प्रेरित करता है{{sup|*}}(एक्स) → एच<sup>i</sup>(X) ↣ H{{sup|*}}(एक्स) (किसी भी वेइल कोहोमोलॉजी एच के लिए) का तात्पर्य है कि प्रत्येक शुद्ध मकसद एम वजन के वर्गीकृत टुकड़ों में विघटित होता है: एम = ⨁Gr<sub>n</sub>एम. शब्दावली भार चिकनी प्रक्षेप्य विविधता के डी-रैम कोहोमोलॉजी के समान अपघटन से आता है, [[हॉज सिद्धांत]] देखें।


अनुमान डी, बीजगणितीय चक्रों के संख्यात्मक और समतुल्य संबंध की सहमति बताते हुए, समरूप और संख्यात्मक समतुल्यता के संबंध में शुद्ध उद्देश्यों की समतुल्यता का तात्पर्य करता है। (विशेष रूप से उद्देश्यों की पूर्व श्रेणी वेइल कोहोमोलॉजी सिद्धांत की पसंद पर निर्भर नहीं होगी)। जैनसेन (1992) ने निम्नलिखित बिना शर्त परिणाम साबित किया: किसी क्षेत्र पर (शुद्ध) उद्देश्यों की श्रेणी एबेलियन और अर्धसरल है यदि और केवल यदि चुना गया तुल्यता संबंध संख्यात्मक तुल्यता है।
अनुमान डी, बीजगणितीय चक्रों के संख्यात्मक और समतुल्य संबंध की सहमति बताते हुए, समरूप और संख्यात्मक समतुल्यता के संबंध में शुद्ध मकसदों की समतुल्यता का तात्पर्य करता है। (विशेष रूप से मकसदों की पूर्व श्रेणी वेइल कोहोमोलॉजी सिद्धांत की पसंद पर निर्भर नहीं होगी)। जैनसेन (1992) ने निम्नलिखित बिना शर्त परिणाम साबित किया: किसी क्षेत्र पर (शुद्ध) मकसदों की श्रेणी एबेलियन और अर्धसरल है यदि और केवल यदि चुना गया तुल्यता संबंध संख्यात्मक तुल्यता है।


[[हॉज अनुमान]] को उद्देश्यों का उपयोग करके बड़े करीने से पुनर्निर्मित किया जा सकता है: यह तर्कसंगत गुणांक (एक उपक्षेत्र पर) के साथ किसी भी शुद्ध उद्देश्य को मैप करने वाले हॉज अहसास को मानता है <math>k</math> का <math>\Complex</math>) इसकी हॉज संरचना एक पूर्ण फ़ंक्टर है <math>H:M(k)_{\Q} \to HS_{\Q}</math> (तर्कसंगत [[हॉज संरचना]]एं)। यहां शुद्ध उद्देश्य का अर्थ सजातीय तुल्यता के संबंध में शुद्ध उद्देश्य से है।
[[हॉज अनुमान]] को मकसदों का उपयोग करके बड़े करीने से पुनर्निर्मित किया जा सकता है: यह तर्कसंगत गुणांक (एक उपक्षेत्र पर) के साथ किसी भी शुद्ध मकसद को मैप करने वाले हॉज अहसास को मानता है <math>k</math> का <math>\Complex</math>) इसकी हॉज संरचना एक पूर्ण फ़ंक्टर है <math>H:M(k)_{\Q} \to HS_{\Q}</math> (तर्कसंगत [[हॉज संरचना]]एं)। यहां शुद्ध मकसद का अर्थ सजातीय तुल्यता के संबंध में शुद्ध मकसद से है।


इसी तरह, [[टेट अनुमान]] इसके बराबर है: तथाकथित टेट अहसास, अर्थात ℓ-एडिक कोहोमोलॉजी, एक पूर्ण फ़ंक्टर है <math>H: M(k)_{\Q_\ell} \to \operatorname{Rep}_{\ell} (\operatorname{Gal}(k))</math> (होमोलॉजिकल तुल्यता तक शुद्ध उद्देश्य, आधार क्षेत्र k के पूर्ण गैलोज़ समूह का निरंतर [[समूह प्रतिनिधित्व]]), जो अर्ध-सरल अभ्यावेदन में मान लेता है। (हॉज एनालॉग के मामले में बाद वाला हिस्सा स्वचालित है)।
इसी तरह, [[टेट अनुमान]] इसके बराबर है: तथाकथित टेट अहसास, अर्थात ℓ-एडिक कोहोमोलॉजी, एक पूर्ण फ़ंक्टर है <math>H: M(k)_{\Q_\ell} \to \operatorname{Rep}_{\ell} (\operatorname{Gal}(k))</math> (होमोलॉजिकल तुल्यता तक शुद्ध मकसद, आधार क्षेत्र k के पूर्ण गैलोज़ समूह का निरंतर [[समूह प्रतिनिधित्व]]), जो अर्ध-सरल अभ्यावेदन में मान लेता है। (हॉज एनालॉग के स्थिति में बाद वाला हिस्सा स्वचालित है)।


==तन्नाकियन औपचारिकता और प्रेरक गैलोज़ समूह==
==तन्नाकियन औपचारिकता और प्रेरक गैलोज़ समूह==
(अनुमानात्मक) मोटिविक गैलोइस समूह को प्रेरित करने के लिए, एक फ़ील्ड k तय करें और फ़ैक्टर पर विचार करें
(अनुमानात्मक) प्रेरक गैलोइस समूह को प्रेरित करने के लिए, एक फ़ील्ड k तय करें और फ़ैक्टर पर विचार करें


:k के परिमित वियोज्य विस्तार K → k के निरपेक्ष गैलोज़ समूह की (निरंतर) सकर्मक क्रिया के साथ गैर-रिक्त परिमित सेट
:k के परिमित वियोज्य विस्तार K → k के निरपेक्ष गैलोज़ समूह की (निरंतर) सकर्मक क्रिया के साथ गैर-रिक्त परिमित सेट


जो K को k के बीजगणितीय समापन में K के एम्बेडिंग के (परिमित) सेट पर मैप करता है। [[गैलोइस सिद्धांत]] में इस फ़ैक्टर को श्रेणियों के तुल्यता के रूप में दिखाया गया है। ध्यान दें कि फ़ील्ड 0-आयामी हैं। इस प्रकार के उद्देश्यों को आर्टिन उद्देश्य कहा जाता है। द्वारा <math>\Q</math>-उपरोक्त वस्तुओं को रैखिक करते हुए, उपरोक्त को व्यक्त करने का दूसरा तरीका यह कहना है कि आर्टिन उद्देश्य परिमित के बराबर हैं <math>\Q</math>-गैलोइस समूह की एक कार्रवाई के साथ वेक्टर रिक्त स्थान।
जो K को k के बीजगणितीय समापन में K के एम्बेडिंग के (परिमित) सेट पर मैप करता है। [[गैलोइस सिद्धांत]] में इस फ़ैक्टर को श्रेणियों के तुल्यता के रूप में दिखाया गया है। ध्यान दें कि फ़ील्ड 0-आयामी हैं। इस प्रकार के मकसदों को आर्टिन मकसद कहा जाता है। द्वारा <math>\Q</math>-उपरोक्त वस्तुओं को रैखिक करते हुए, उपरोक्त को व्यक्त करने का दूसरा तरीका यह कहना है कि आर्टिन मकसद परिमित के बराबर हैं <math>\Q</math>-गैलोइस समूह की एक कार्रवाई के साथ वेक्टर रिक्त स्थान।


मोटिविक गैलोज़ समूह का उद्देश्य उपरोक्त तुल्यता को उच्च-आयामी किस्मों तक विस्तारित करना है। ऐसा करने के लिए, [[तन्नाकियन श्रेणी]] सिद्धांत (तन्नाका-क्रेन द्वैत पर वापस जाते हुए, लेकिन एक विशुद्ध बीजगणितीय सिद्धांत) की तकनीकी मशीनरी का उपयोग किया जाता है। इसका उद्देश्य [[बीजगणितीय चक्र]] सिद्धांत में उत्कृष्ट प्रश्नों, हॉज अनुमान और टेट अनुमान दोनों पर प्रकाश डालना है। वेइल कोहोमोलॉजी सिद्धांत ''एच'' को ठीक करें। यह ''एम'' से एक फ़नकार देता है<sub>num</sub>(संख्यात्मक तुल्यता का उपयोग करके शुद्ध उद्देश्य) परिमित-आयामी तक <math>\Q</math>-वेक्टर रिक्त स्थान. यह दिखाया जा सकता है कि पूर्व श्रेणी एक तन्नाकियन श्रेणी है। समरूप और संख्यात्मक तुल्यता की समतुल्यता को मानते हुए, अर्थात उपरोक्त मानक अनुमान डी, फ़ैक्टर एच एक सटीक वफादार टेंसर-फ़ंक्टर है। तन्नाकियन औपचारिकता को लागू करते हुए, कोई यह निष्कर्ष निकालता है कि एम<sub>num</sub>[[बीजगणितीय समूह]] जी के समूह प्रतिनिधित्व की श्रेणी के बराबर है, जिसे मोटिविक गैलोज़ समूह के रूप में जाना जाता है।
प्रेरक गैलोज़ समूह का मकसद उपरोक्त तुल्यता को उच्च-आयामी विविधता तक विस्तारित करना है। ऐसा करने के लिए, [[तन्नाकियन श्रेणी]] सिद्धांत (तन्नाका-क्रेन द्वैत पर वापस जाते हुए, लेकिन एक विशुद्ध बीजगणितीय सिद्धांत) की तकनीकी मशीनरी का उपयोग किया जाता है। इसका मकसद [[बीजगणितीय चक्र]] सिद्धांत में उत्कृष्ट प्रश्नों, हॉज अनुमान और टेट अनुमान दोनों पर प्रकाश डालना है। वेइल कोहोमोलॉजी सिद्धांत ''एच'' को ठीक करें। यह ''एम'' से एक फ़नकार देता है<sub>num</sub>(संख्यात्मक तुल्यता का उपयोग करके शुद्ध मकसद) परिमित-आयामी तक <math>\Q</math>-वेक्टर रिक्त स्थान. यह दिखाया जा सकता है कि पूर्व श्रेणी एक तन्नाकियन श्रेणी है। समरूप और संख्यात्मक तुल्यता की समतुल्यता को मानते हुए, अर्थात उपरोक्त मानक अनुमान डी, फ़ैक्टर एच एक सटीक वफादार टेंसर-फ़ंक्टर है। तन्नाकियन औपचारिकता को लागू करते हुए, कोई यह निष्कर्ष निकालता है कि एम<sub>num</sub>[[बीजगणितीय समूह]] जी के समूह प्रतिनिधित्व की श्रेणी के बराबर है, जिसे प्रेरक गैलोज़ समूह के रूप में जाना जाता है।


मोटिविक गैलोज़ समूह उद्देश्यों के सिद्धांत के लिए वही है जो ममफोर्ड-टेट समूह हॉज सिद्धांत के लिए है। फिर से मोटे तौर पर कहें तो, हॉज और टेट अनुमान [[अपरिवर्तनीय सिद्धांत]] के प्रकार हैं (यदि कोई सही परिभाषाएँ स्थापित करता है, तो वे स्थान जो नैतिक रूप से बीजगणितीय चक्र हैं, उन्हें एक समूह के तहत अपरिवर्तनीयता द्वारा चुना जाता है)। मोटिविक गैलोज़ समूह के पास आसपास का प्रतिनिधित्व सिद्धांत है। (यह जो नहीं है, वह एक गैलोज़ समूह है; हालाँकि टेट अनुमान और ईटेल कोहोमोलॉजी पर गैलोज़ अभ्यावेदन के संदर्भ में, यह गैलोज़ समूह की छवि की भविष्यवाणी करता है, या, अधिक सटीक रूप से, इसके लाई बीजगणित।)
प्रेरक गैलोज़ समूह मकसदों के सिद्धांत के लिए वही है जो ममफोर्ड-टेट समूह हॉज सिद्धांत के लिए है। फिर से मोटे तौर पर कहें तो, हॉज और टेट अनुमान [[अपरिवर्तनीय सिद्धांत]] के प्रकार हैं (यदि कोई सही परिभाषाएँ स्थापित करता है, तो वे स्थान जो नैतिक रूप से बीजगणितीय चक्र हैं, उन्हें एक समूह के तहत अपरिवर्तनीयता द्वारा चुना जाता है)। प्रेरक गैलोज़ समूह के पास आसपास का प्रतिनिधित्व सिद्धांत है। (यह जो नहीं है, वह एक गैलोज़ समूह है; हालाँकि टेट अनुमान और ईटेल कोहोमोलॉजी पर गैलोज़ अभ्यावेदन के संदर्भ में, यह गैलोज़ समूह की छवि की भविष्यवाणी करता है, या, अधिक सटीक रूप से, इसके लाई बीजगणित।)


==यह भी देखें==
==यह भी देखें==
* पीरियड्स का रिंग
* पीरियड्स का रिंग
*मोटिविक कोहोमोलॉजी
*प्रेरक कोहोमोलॉजी
* [[स्थानान्तरण के साथ प्रीशीफ]]़
* [[स्थानान्तरण के साथ प्रीशीफ]]़
*[[मिश्रित हॉज मॉड्यूल]]
*[[मिश्रित हॉज मॉड्यूल]]
*एल-उद्देश्यों के कार्य
*एल-मकसदों के कार्य


==संदर्भ==
==संदर्भ==
Line 263: Line 263:


* {{Citation | last1=Beilinson | first1=Alexander | author1-link = Alexander Beilinson | first2 = Vadim | last2=Vologodsky | title=A DG guide to Voevodsky's motives | year=2007 | page=4004 | url=http://www.math.uiuc.edu/K-theory/0832/ |arxiv = math/0604004 | bibcode=2006math......4004B }} (अपेक्षाकृत संक्षिप्त प्रमाणों के साथ तकनीकी परिचय)
* {{Citation | last1=Beilinson | first1=Alexander | author1-link = Alexander Beilinson | first2 = Vadim | last2=Vologodsky | title=A DG guide to Voevodsky's motives | year=2007 | page=4004 | url=http://www.math.uiuc.edu/K-theory/0832/ |arxiv = math/0604004 | bibcode=2006math......4004B }} (अपेक्षाकृत संक्षिप्त प्रमाणों के साथ तकनीकी परिचय)
*[https://www.jmilne.org/math/articles/1994aP.pdf परिमित क्षेत्रों पर उद्देश्य] - जे.एस. मिलन
*[https://www.jmilne.org/math/articles/1994aP.pdf परिमित क्षेत्रों पर मकसद] - जे.एस. मिलन
* {{Citation | last1=Mazur | first1=Barry | title=What is ... a motive? |mr=2104916 | year=2004 | journal=Notices of the American Mathematical Society | issn=0002-9920 | volume=51 | issue=10 | pages=1214–1216 | url=https://www.ams.org/notices/200410/what-is.pdf}} (डमी पाठ के लिए उद्देश्य)।
* {{Citation | last1=Mazur | first1=Barry | title=What is ... a motive? |mr=2104916 | year=2004 | journal=Notices of the American Mathematical Society | issn=0002-9920 | volume=51 | issue=10 | pages=1214–1216 | url=https://www.ams.org/notices/200410/what-is.pdf}} (डमी पाठ के लिए मकसद)।
* {{Citation | last1=Serre | first1=Jean-Pierre | title=Motifs |mr=1144336 | year=1991 | journal=Astérisque | issn=0303-1179 | issue=198 | pages=11, 333–349 (1992) | url=http://www.numdam.org/article/AST_1991__198-199-200__333_0.pdf | archive-url=https://web.archive.org/web/20220110212613/http://www.numdam.org/article/AST_1991__198-199-200__333_0.pdf | archive-date=2022-01-10 | language=French}} (फ्रेंच में उद्देश्यों का उच्च स्तरीय परिचय)।
* {{Citation | last1=Serre | first1=Jean-Pierre | title=Motifs |mr=1144336 | year=1991 | journal=Astérisque | issn=0303-1179 | issue=198 | pages=11, 333–349 (1992) | url=http://www.numdam.org/article/AST_1991__198-199-200__333_0.pdf | archive-url=https://web.archive.org/web/20220110212613/http://www.numdam.org/article/AST_1991__198-199-200__333_0.pdf | archive-date=2022-01-10 | language=French}} (फ्रेंच में मकसदों का उच्च स्तरीय परिचय)।
* {{Citation | last=Tabauda | first=Goncalo | title=A guided tour through the garden of noncommutative motives | url=https://faculty.math.illinois.edu/K-theory/1007/ | journal=Journal of K-theory| year=2011 | arxiv=1108.3787 }}
* {{Citation | last=Tabauda | first=Goncalo | title=A guided tour through the garden of noncommutative motives | url=https://faculty.math.illinois.edu/K-theory/1007/ | journal=Journal of K-theory| year=2011 | arxiv=1108.3787 }}


Line 273: Line 273:
** एल. ब्रीन: तन्नाकियन श्रेणियां।
** एल. ब्रीन: तन्नाकियन श्रेणियां।
** एस. क्लेमन: मानक अनुमान।
** एस. क्लेमन: मानक अनुमान।
** ए. शोल: शास्त्रीय उद्देश्य। (चाउ उद्देश्यों का विस्तृत विवरण)
** ए. शोल: शास्त्रीय मकसद। (चाउ मकसदों का विस्तृत विवरण)
* {{Citation | last1=Huber | first1=Annette | last2=Müller-Stach | first2=Stefan | title=Periods and Nori Motives | isbn=978-3-319-50925-9 | publisher=Springer | date=2017-03-20 }}
* {{Citation | last1=Huber | first1=Annette | last2=Müller-Stach | first2=Stefan | title=Periods and Nori Motives | isbn=978-3-319-50925-9 | publisher=Springer | date=2017-03-20 }}
* {{Citation | last1=Mazza | first1=Carlo | last2=Voevodsky | first2=Vladimir | author2-link = Vladimir Voevodsky | last3=Weibel | first3=Charles | title=Lecture notes on motivic cohomology | publisher=American Mathematical Society | location=Providence, R.I. | series=[[Clay Mathematics Monographs]] | isbn=978-0-8218-3847-1|mr=2242284 | year=2006 | volume=2 |url=http://math.rutgers.edu/~weibel/motiviclectures.html}}
* {{Citation | last1=Mazza | first1=Carlo | last2=Voevodsky | first2=Vladimir | author2-link = Vladimir Voevodsky | last3=Weibel | first3=Charles | title=Lecture notes on motivic cohomology | publisher=American Mathematical Society | location=Providence, R.I. | series=[[Clay Mathematics Monographs]] | isbn=978-0-8218-3847-1|mr=2242284 | year=2006 | volume=2 |url=http://math.rutgers.edu/~weibel/motiviclectures.html}}
Line 284: Line 284:
* {{Citation | last1 = Kleiman | first1 = Steven L. | editor1-last = Oort | editor1-first = F. | title=Algebraic geometry, Oslo 1970 (Proc. Fifth Nordic Summer-School in Math., Oslo, 1970) | publisher=Wolters-Noordhoff | location=Groningen | year=1972 | chapter=Motives | pages=53–82}} (चक्रों पर पर्याप्त तुल्यता संबंध)।
* {{Citation | last1 = Kleiman | first1 = Steven L. | editor1-last = Oort | editor1-first = F. | title=Algebraic geometry, Oslo 1970 (Proc. Fifth Nordic Summer-School in Math., Oslo, 1970) | publisher=Wolters-Noordhoff | location=Groningen | year=1972 | chapter=Motives | pages=53–82}} (चक्रों पर पर्याप्त तुल्यता संबंध)।
* मिल्ने, जेम्स एस. [http://www.jmilne.org/math/xnotes/MOT.pdf मोटिव्स - ग्रोथेंडिएक का सपना]
* मिल्ने, जेम्स एस. [http://www.jmilne.org/math/xnotes/MOT.pdf मोटिव्स - ग्रोथेंडिएक का सपना]
* {{Citation | last1 = Voevodsky | first1 = Vladimir | author1-link = Vladimir Voevodsky | last2 = Suslin | first2 = Andrei | author2-link = Andrei Suslin | last3 = Friedlander | first3 = Eric M. | title=Cycles, transfers, and motivic homology theories | url=http://www.math.uiuc.edu/K-theory/0368/ | publisher=Princeton University Press | location=Princeton, New Jersey | series=Annals of Mathematics Studies | isbn=978-0-691-04814-7| year=2000}} (वोएवोडस्की की मिश्रित उद्देश्यों की परिभाषा। अत्यधिक तकनीकी)।
* {{Citation | last1 = Voevodsky | first1 = Vladimir | author1-link = Vladimir Voevodsky | last2 = Suslin | first2 = Andrei | author2-link = Andrei Suslin | last3 = Friedlander | first3 = Eric M. | title=Cycles, transfers, and motivic homology theories | url=http://www.math.uiuc.edu/K-theory/0368/ | publisher=Princeton University Press | location=Princeton, New Jersey | series=Annals of Mathematics Studies | isbn=978-0-691-04814-7| year=2000}} (वोएवोडस्की की मिश्रित मकसदों की परिभाषा। अत्यधिक तकनीकी)।
*{{Cite journal | last=Huber | first=Annette | date=2000 | title=वोएवोडस्की के उद्देश्यों का एहसास| url=https://pdfs.semanticscholar.org/2b04/2f81bc16df356e7efb35ac2504ef0aadd5ff.pdf | archive-url=https://web.archive.org/web/20170926095833/https://pdfs.semanticscholar.org/2b04/2f81bc16df356e7efb35ac2504ef0aadd5ff.pdf | url-status=dead | archive-date=2017-09-26 | journal=Journal of Algebraic Geometry | volume=9 | pages=755–799| s2cid=17160833 }}
*{{Cite journal | last=Huber | first=Annette | date=2000 | title=वोएवोडस्की के उद्देश्यों का एहसास| url=https://pdfs.semanticscholar.org/2b04/2f81bc16df356e7efb35ac2504ef0aadd5ff.pdf | archive-url=https://web.archive.org/web/20170926095833/https://pdfs.semanticscholar.org/2b04/2f81bc16df356e7efb35ac2504ef0aadd5ff.pdf | url-status=dead | archive-date=2017-09-26 | journal=Journal of Algebraic Geometry | volume=9 | pages=755–799| s2cid=17160833 }}



Revision as of 01:29, 29 July 2023

बीजगणितीय ज्यामिति में, मकसद (या कभी-कभी रूपांकन, फ्रांसीसी भाषा के उपयोग के बाद) 1960 के दशक में अलेक्जेंडर ग्रोथेंडिक द्वारा प्रस्तावित एक सिद्धांत है, जो समान व्यवहार वाले कोहोमोलॉजी सिद्धांतों जैसे कि एकवचन कोहोमोलॉजी, डी राम कोहोमोलॉजी, ईटेल कोहोमोलॉजी और क्रिस्टलीय कोहोमोलॉजी के विशाल सरणी को एकीकृत करता है। दार्शनिक रूप से, एक "मोटिफ़" विभिन्न प्रकार का "कोहोमोलॉजी सार" है।

चिकनी प्रक्षेप्य विविधता के लिए ग्रोथेंडिक के सूत्रीकरण में, एक मकसद एक ट्रिपल है , जहां एक्स एक सहज प्रक्षेप्य विविधता है, एक निष्क्रिय पत्राचार (बीजगणितीय ज्यामिति) है, और एम एक पूर्णांक है, हालांकि, इस तरह के ट्रिपल में ग्रोथेंडिक की शुद्ध मकसदों की श्रेणी (गणित) के संदर्भ के बाहर लगभग कोई जानकारी नहीं होती है, जहां से एक रूपवाद को डिग्री के पत्राचार द्वारा दिया जाता है . पियरे डेलिग्ने द्वारा ले ग्रुप फोंडामेंटल डे ला ड्रोइट प्रोजेक्टिव मोइन्स ट्रोइस पॉइंट्स में एक अधिक वस्तु-केंद्रित दृष्टिकोण अपनाया गया है। उस लेख में, एक मकसद एक "प्राप्ति की प्रणाली" है - अर्थात, एक टपल

मॉड्यूल (गणित) से मिलकर

रिंग के ऊपर (गणित)

क्रमशः, विभिन्न तुलनात्मक समरूपताएँ

इन मॉड्यूलों के स्पष्ट आधार परिवर्तनों, निस्पंदन क्रिया के बीच , ए -कार्य पर और एक "फ्रोबेनियस" ऑटोमोर्फिज्म का . यह डेटा एक सुचारु प्रक्षेप्य के सह-समरूपता पर आधारित है -विविधता , संरचनाएं और अनुकूलता वे स्वीकार करते है, और एक विचार देते है कि किस प्रकार की जानकारी में एक मकसद निहित है।

परिचय

मकसदों के सिद्धांत को मूल रूप से बेट्टी कोहोमोलॉजी, डी राम कोहोमोलॉजी, एल-एडिक कोहोमोलॉजी और क्रिस्टलीय कोहोमोलॉजी सहित कोहोलॉजी सिद्धांतों की तेजी से बढ़ती सरणी को एकजुट करने के प्रयास के रूप में अनुमानित किया गया था। सामान्य आशा यह है कि समीकरण जैसे हों

  • [प्रक्षेप्य रेखा] = [रेखा] + [बिंदु]
  • [प्रक्षेप्य तल] = [तल] + [रेखा] + [बिंदु]

इसे गहरे अर्थ के साथ तेजी से ठोस गणितीय आधार पर रखा जा सकता है। बिल्कुल, उपरोक्त समीकरण पहले से ही कई अर्थों में सत्य माने जाते हैं, जैसे कि सीडब्ल्यू-कॉम्प्लेक्स के अर्थ में जहां "+" संलग्न कोशिकाओं से मेल खाता है, और विभिन्न कोहोमोलॉजी सिद्धांतों के अर्थ में, जहां "+" से मेल खाता है प्रत्यक्ष योग।

दूसरे दृष्टिकोण से, मकसद विविधता पर तर्कसंगत कार्यों से लेकर विविधता पर विभाजक से लेकर विविधता के चाउ समूहों तक सामान्यीकरण के क्रम को जारी रखते हैं। सामान्यीकरण एक से अधिक दिशाओं में होता है, क्योंकि मकसदों को तर्कसंगत तुल्यता की तुलना में अधिक प्रकार की तुल्यता के संबंध में माना जा सकता है। स्वीकार्य तुल्यताएँ पर्याप्त तुल्यता संबंध की परिभाषा द्वारा दी जाती हैं।

शुद्ध मकसदों की परिभाषा

शुद्ध मकसदों की श्रेणी (गणित) प्रायः तीन चरणों में आगे बढ़ती है। नीचे हम चाउ मोटिव्स के मकसद का वर्णन करते हैं , जहां k कोई क्षेत्र है।

पहला चरण: (डिग्री 0) पत्राचार की श्रेणी, कोर(के)

की वस्तुएं K के ऊपर केवल चिकनी प्रक्षेप्य किस्में हैं। रूपवाद पत्राचार हैं। वे विविधता की आकृतियों का सामान्यीकरण करते हैं , जिसे उनके ग्राफ़ के साथ जोड़ा जा सकता है , निश्चित आयामी चाउ रिंग पर .

मनमाने ढंग से डिग्री के पत्राचार का वर्णन करना उपयोगी होगा, हालांकि इसमें रूपवाद है डिग्री 0 के अनुरूप हैं। विस्तार से, मान लें कि X और Y चिकनी प्रक्षेप्य किस्में हैं और जुड़े हुए घटकों में X के अपघटन पर विचार करें:

अगर , तो X से Y तक डिग्री r के पत्राचार है

कहाँ कोडिमेंशन k के चाउ-चक्र को दर्शाता है। पत्राचार को अधिकतर ⊢ -चिह्न का उपयोग करके दर्शाया जाता है, उदाहरण के लिए, . किसी के लिए और उनकी रचना द्वारा परिभाषित किया गया है

जहां बिंदु चाउ रिंग (अर्थात, सर्वनिष्ठ) में उत्पाद को दर्शाता है।

श्रेणी के निर्माण पर वापस लौट रहे हैं ध्यान दें कि डिग्री 0 पत्राचार की संरचना डिग्री 0 है। इसलिए हम रूपवाद को परिभाषित करते हैं डिग्री 0 पत्राचार होना।

निम्नलिखित समिति एक अवच्छेदक है (यहाँ)। के ग्राफ को दर्शाता है ):

ठीक वैसा श्रेणी में प्रत्यक्ष योग (XY := XY) और प्रदिश गुणनफल

(XY := X × Y). यह एक प्रीएडिटिव श्रेणी है। रूपवादों का योग द्वारा परिभाषित किया गया है


दूसरा चरण: शुद्ध प्रभावी चाउ मकसदों की श्रेणी, चाउप्रभाव(k)

मकसदों में परिवर्तन छद्म-विनिमेय समूह लिफाफा लेकर किया जाता है :

.

दूसरे शब्दों में, प्रभावी चाउ मकसद चिकनी प्रक्षेप्य विविधता एक्स और निष्क्रिय पत्राचार α: X ⊢ X के जोड़े हैं, और आकारिकी एक निश्चित प्रकार के पत्राचार के हैं:

संरचना पत्राचार की उपरोक्त परिभाषित संरचना है, और (X, α) की पहचान रूपवाद को α : X ⊢ X के रूप में परिभाषित किया गया है।

समिति,

,

जहां ΔX := [आईडीX] X × X के विकर्ण को दर्शाता है, एक अवच्छेदक है। मकसद [X] को अधिकतर किस्म X से जुड़ा मकसद कहा जाता है।

जैसी कि अभिप्रेत, चौeff(k) एक छद्म-विनिमेय समूह है। प्रभावी मकसदों का प्रत्यक्ष योग किसके द्वारा दिया जाता है?

प्रभावी मकसदों की प्रदिश गुणनफल को परिभाषित किया गया है

कहाँ

आकारिकी के प्रदिश गुणनफल को भी परिभाषित किया जा सकता है। होने देना f1 : (X1, α1) → (Y1, β1) और f2 : (X2, α2) → (Y2, β2) मकसदों की आकृतियाँ बनें। तो करने दें γ1A*(X1 × Y1) और γ2A*(X2 × Y2) f1 और f2 के प्रतिनिधि बनें। तब

,

जहां πi : X1 × X2 × Y1 × Y2Xi × Yi अनुमान हैं.

तीसरा चरण: शुद्ध चाउ मकसदों की श्रेणी, चाउ(के)

मकसदों की ओर आगे बढ़ने के लिए, हम चाउeff(k) के साथ एक मकसद का औपचारिक व्युत्क्रम (प्रदिश गुणनफल के संबंध में) जोड़ते हैं जिसे लेफ्सचेत्ज़ मकसद कहा जाता है। इसका प्रभाव यह होता है कि मकसद जोड़े के बजाय तीन हो जाते हैं। लेफ्शेट्ज़ मकसद L है

.

यदि हम मकसद 1 को परिभाषित करते हैं, जिसे तुच्छ टेट मकसद कहा जाता है, 1 := h(Spec(k)) द्वारा, तो सुरुचिपूर्ण समीकरण

तब से धारण करता है

लेफ्शेट्ज़ मकसद के प्रदिश गुणनफल को टेट मकसद के रूप में जाना जाता है, T: = L−1. फिर हम शुद्ध चाउ मकसदों की श्रेणी को परिभाषित करते हैं

.

एक मकसद तो एक ट्रिपल है

जैसे कि आकारिकी पत्राचार द्वारा दी जाती है

और आकारिकी की संरचना पत्राचार की संरचना से आती है।

उद्देश के अनुसार, एक कठोर श्रेणी छद्म-विनिमेय समूह श्रेणी है।

अन्य प्रकार के मकसद

एक प्रतिच्छेदन उत्पाद को परिभाषित करने के लिए, चक्रों को "चलने योग्य" होना चाहिए ताकि हम उन्हें सामान्य स्थिति में प्रतिच्छेद कर सकें। चक्रों पर एक उपयुक्त तुल्यता संबंध चुनने से यह बंधक होगी कि चक्रों की प्रत्येक जोड़ी में सामान्य स्थिति में एक समतुल्य जोड़ी होती है जिसे हम प्रतिच्छेद कर सकते हैं। चाउ समूहों को तर्कसंगत तुल्यता का उपयोग करके परिभाषित किया गया है, लेकिन अन्य तुल्यताएं संभव हैं, और प्रत्येक एक अलग प्रकार के मकसद को परिभाषित करता है। सबसे मजबूत से लेकर सबसे कमजोर तक, समतुल्यता के उदाहरण हैं

  • तर्कसंगत तुल्यता
  • बीजीय तुल्यता
  • तोड़-फोड़ तुल्यता (कभी-कभी वोएवोडस्की तुल्यता भी कहा जाता है)
  • समजात तुल्यता (वेइल कोहोमोलॉजी के अर्थ में)
  • संख्यात्मक तुल्यता

साहित्य कभी-कभी हर प्रकार के शुद्ध मकसद को चाउ मकसद कहता है, इस स्थिति में बीजगणितीय तुल्यता के संबंध में एक मकसद को चाउ मकसद मोडुलो बीजगणितीय तुल्यता कहा जाएगा।

मिश्रित मकसद

एक निश्चित आधार क्षेत्र k के लिए, 'मिश्रित मकसदों' की श्रेणी एक अनुमानित विनिमेय समूह टेंसर श्रेणी है , एक विरोधाभासी फ़ैक्टर के साथ

सभी विविधता पर मूल्य लेना (सिर्फ सहज प्रक्षेपी नहीं, जैसा कि शुद्ध मकसदों के स्थिति में था)। यह ऐसा होना चाहिए कि प्रेरक कोहोमोलॉजी द्वारा परिभाषित किया गया हो

बीजगणितीय के-सिद्धांत द्वारा भविष्यवाणी की गई भविष्यवाणी के साथ मेल खाता है, और इसमें उपयुक्त अर्थ (और अन्य गुणों) में चाउ मकसदों की श्रेणी सम्मिलित है। ऐसी श्रेणी के अस्तित्व का अनुमान अलेक्जेंडर बेइलिंसन ने लगाया था।

ऐसी श्रेणी के निर्माण के अतिरिक्त, डेलिग्ने द्वारा यह प्रस्तावित किया गया था कि पहले एक श्रेणी DM का निर्माण किया जाए जिसमें व्युत्पन्न श्रेणी के लिए अपेक्षित गुण हों।

.

DM से MM वापस प्राप्त करना एक (अनुमानात्मक) प्रेरक टी-संरचना द्वारा पूरा किया जाएगा।

सिद्धांत की वर्तमान स्थिति यह है कि हमारे पास एक उपयुक्त श्रेणी DM है। यह श्रेणी पहले से ही अनुप्रयोगों में उपयोगी है। व्लादिमीर वोएवोडस्की के फील्ड्स मेडल-विजेता मिल्नोर अनुमान का प्रमाण इन मकसदों को एक प्रमुख घटक के रूप में उपयोग करता है।

हनामुरा, लेविन और वोवोडस्की के कारण अलग-अलग परिभाषाएँ हैं। वे ज्यादातर स्थिति में समकक्ष माने जाते हैं और हम वोएवोडस्की की परिभाषा नीचे देंगे। श्रेणी में चाउ मोटिव्स को पूर्ण उपश्रेणी के रूप में सम्मिलित किया गया है और यह "सही" प्रेरक कोहोलॉजी देता है। हालाँकि, वोएवोडस्की यह भी दर्शाता है कि (अभिन्न गुणांकों के साथ) यह एक प्रेरक टी-संरचना को स्वीकार नहीं करता है।

ज्यामितीय मिश्रित मकसद

संकेतन

यहां हम विशेषता 0 का एक क्षेत्र k तय करेंगे और जाने देंगे हमारा गुणांक वलय हो। तय करेंगे जैसा कि k से अधिक अर्ध-प्रक्षेपी विविधता की श्रेणी में परिमित प्रकार की अलग-अलग योजनाएं हैं। हम भी देंगे चिकनी विविधता की उपश्रेणी हो।

पत्राचार के साथ चिकनी विविधता

एक सहज विविधता X और एक विविधता Y को देखते हुए एक अभिन्न बंद उपयोजना कहते हैं जो X के ऊपर परिमित है और Y के एक घटक पर विशेषण है। फिर, हम X से Y तक प्राइम पत्राचार का सेट ले सकते हैं और एक मुफ्त ए-मॉड्यूल का निर्माण कर सकते हैं A-मापांक . इसके तत्वों को परिमित संगतता कहा जाता है। फिर, हम एक योगात्मक श्रेणी बना सकते हैं जिनकी वस्तुएं चिकनी विविधता हैं और आकारिकी चिकनी पत्राचार द्वारा दी गई हैं। इस "परिभाषा" का एकमात्र गैर-तुच्छ हिस्सा यह तथ्य है कि हमें रचनाओं का वर्णन करने की आवश्यकता है। ये चाउ रिंग्स के सिद्धांत से पुश-पुल फॉर्मूला द्वारा दिए गए हैं।

पत्राचार के उदाहरण

प्राइम पत्राचार के विशिष्ट उदाहरण ग्राफ़ से आते हैं विविधता के एक रूपवाद का .


होमोटॉपी श्रेणी का स्थानीयकरण

यहां से हम होमोटॉपी श्रेणी बना सकते हैं सहज पत्राचार के बंधे हुए परिसरों की। यहां चिकनी विविधता को दर्शाया जाएगा . यदि हम किसी श्रेणी का स्थानीयकरण करते हैं, तो इस श्रेणी को सबसे छोटी मोटी उपश्रेणी (जिसका अर्थ है कि यह एक्सटेंशन के तहत बंद है) के संबंध में आकारिकी युक्त है

और

तब हम प्रभावी ज्यामितीय मकसदों की त्रिकोणीय श्रेणी बना सकते हैं ध्यान दें कि आकारिकी का पहला वर्ग स्थानीयकरण कर रहा है -विविधता की समरूपता जबकि दूसरा मेयर-विएटोरिस अनुक्रम में ज्यामितीय मिश्रित मकसदों की श्रेणी देगा।

साथ ही, ध्यान दें कि इस श्रेणी में विविधता के उत्पाद द्वारा दी गई एक टेंसर संरचना होती है .

टेट मकसद को उलटना

त्रिभुजाकार संरचना का उपयोग करके हम एक त्रिभुज का निर्माण कर सकते हैं

विहित मानचित्र से . हम सेट करेंगे और इसे टेट मकसद कहें। पुनरावृत्त टेंसर उत्पाद लेने से हमें निर्माण करने की सुविधा मिलती है . यदि हमारे पास एक प्रभावी ज्यामितीय मकसद है M हम जाने निरूपित इसके अलावा, यह कार्यात्मक रूप से व्यवहार करता है और एक त्रिकोणीय फ़ंक्शनल बनाता है। अंत में, हम ज्यामितीय मिश्रित मकसदों की श्रेणी को परिभाषित कर सकते हैं जोड़ियों की श्रेणी के रूप में के लिए M एक प्रभावी ज्यामितीय मिश्रित मकसद और n टेट मकसद द्वारा मोड़ का प्रतिनिधित्व करने वाला एक पूर्णांक। होम-ग्रुप तब कोलिमिट होते हैं


मकसदों के उदाहरण

टेट मकसद

मकसदों के कई प्राथमिक उदाहरण हैं जो आसानी से उपलब्ध हैं। उनमें से एक टेट मकसद है, जिसे दर्शाया गया है , , या , मकसदों की श्रेणी के निर्माण में उपयोग किए गए गुणांक पर निर्भर करता है। ये मकसदों की श्रेणी में मौलिक निर्माण खंड हैं क्योंकि वे एबेलियन विविधता के अलावा अन्य भाग बनाते हैं।

वक्रों के मकसद

वक्र के मकसद को सापेक्ष आसानी से स्पष्ट रूप से समझा जा सकता है: उनकी चाउ रिंग उचित है

किसी भी चिकने प्रक्षेप्य वक्र के लिए , इसलिए जैकोबियन को मकसदों की श्रेणी में शामिल किया गया है।

गैर-विशेषज्ञों के लिए स्पष्टीकरण

गणित में आमतौर पर लागू की जाने वाली तकनीक एक श्रेणी (गणित) का परिचय देकर एक विशेष संरचना वाली वस्तुओं का अध्ययन करना है जिसका रूपवाद इस संरचना को संरक्षित करता है। तब कोई यह पूछ सकता है कि दी गई दो वस्तुएं समरूपी हैं, और प्रत्येक समरूपता वर्ग में एक विशेष रूप से अच्छे प्रतिनिधि के लिए पूछें। बीजगणितीय विविधता का वर्गीकरण, अर्थात बीजगणितीय विविधता के स्थिति में इस विचार का अनुप्रयोग, वस्तुओं की अत्यधिक गैर-रैखिक संरचना के कारण बहुत मुश्किल है। द्विवार्षिक समरूपता तक की विविधता का अध्ययन करने के शांत प्रश्न ने द्विवार्षिक ज्यामिति के क्षेत्र को जन्म दिया है। प्रश्न को संभालने का दूसरा तरीका यह है कि किसी दिए गए प्रकार यह रैखिककरण आमतौर पर कोहोलॉजी के नाम से जाना जाता है।

कई महत्वपूर्ण सह-समरूपता सिद्धांत हैं, जो विविधता के विभिन्न संरचनात्मक पहलुओं को दर्शाते हैं। (आंशिक रूप से अनुमानित) 'मकसदों का सिद्धांत' बीजगणितीय विविधता को रैखिक बनाने के लिए एक सार्वभौमिक तरीका खोजने का एक प्रयास है, अर्थात मकसदों को एक सह-समरूपता सिद्धांत प्रदान करना चाहिए जो इन सभी विशेष सह-समरूपताओं का प्रतीक है। उदाहरण के लिए, एक चिकने प्रक्षेप्य वक्र C का Genus_(गणित), जो वक्र का एक दिलचस्प अपरिवर्तनीय है, एक पूर्णांक है, जिसे C के पहले बेट्टी कोहोमोलॉजी समूह के आयाम से पढ़ा जा सकता है। तो, वक्र का मकसद इसमें वंश की जानकारी होनी चाहिए। बेशक, जीनस एक मोटा अपरिवर्तनीय है, इसलिए सी का मकसद सिर्फ इस संख्या से कहीं अधिक है।

एक सार्वभौमिक सह-समरूपता की खोज

प्रत्येक बीजगणितीय किस्म X का एक संगत मकसद [X] होता है, इसलिए मकसदों के सबसे सरल उदाहरण हैं:

  • [बिंदु]
  • [प्रक्षेप्य रेखा] = [बिंदु] + [रेखा]
  • [प्रक्षेप्य तल] = [तल] + [रेखा] + [बिंदु]

ये 'समीकरण' कई स्थितियों में लागू होते हैं, अर्थात् डी राम कोहोमोलॉजी और बेट्टी कोहोमोलॉजी, एटले कोहोमोलॉजी|एल-एडिक कोहोमोलॉजी, किसी भी परिमित क्षेत्र पर अंकों की संख्या, और स्थानीय ज़ेटा-फ़ंक्शन के लिए गुणक संकेतन में।

सामान्य विचार यह है कि किसी भी उचित सह-समरूपता सिद्धांत में अच्छे औपचारिक गुणों के साथ एक 'मकसद' की संरचना समान होती है; विशेष रूप से, किसी भी 'वेइल कोहोमोलॉजी' सिद्धांत में ऐसे गुण होंगे। अलग-अलग वेइल कोहोमोलॉजी सिद्धांत हैं, वे विभिन्न स्थितियों में लागू होते हैं और विभिन्न श्रेणियों में उनके मूल्य होते हैं, और प्रश्न में विविधता के विभिन्न संरचनात्मक पहलुओं को दर्शाते हैं:

  • बेट्टी कोहोमोलॉजी को जटिल संख्याओं (उपक्षेत्रों) की विविधता के लिए परिभाषित किया गया है, इसमें पूर्णांकों पर परिभाषित होने का लाभ है और यह एक टोपोलॉजिकल अपरिवर्तनीय है
  • डी राम कोहोमोलॉजी (विविधता के लिए)। ) मिश्रित हॉज संरचना के साथ आता है, यह एक विभेदक-ज्यामितीय अपरिवर्तनीय है
  • étale cohomology|l-एडिक कोहोमोलॉजी (विशेषता ≠ l के किसी भी क्षेत्र पर) में एक विहित गैलोज़ समूह क्रिया है, अर्थात (पूर्ण) गैलोज़ समूह के प्रतिनिधित्व (गणित) में मान हैं
  • क्रिस्टलीय सहसंरचना

ये सभी सह-समरूपता सिद्धांत समान गुण साझा करते हैं, जैसे मेयर-विएटोरिस अनुक्रमों का अस्तित्व, होमोटॉपी इनवेरिएंस एफ़िन लाइन के साथ एक्स का उत्पाद) और अन्य। इसके अलावा, वे तुलनात्मक समरूपता से जुड़े हुए हैं, उदाहरण के लिए बेट्टी कोहोमोलॉजी एक चिकनी किस्म का एक्स ओवर परिमित गुणांकों के साथ एल-एडिक कोहोमोलॉजी परिमित गुणांकों के साथ समरूपी है।

'मकसदों का सिद्धांत' एक सार्वभौमिक सिद्धांत खोजने का एक प्रयास है जो इन सभी विशेष सह-समरूपताओं और उनकी संरचनाओं का प्रतीक है और जैसे समीकरणों के लिए एक रूपरेखा प्रदान करता है

[प्रक्षेप्य रेखा] = [रेखा]+[बिंदु]।

विशेष रूप से, किसी भी किस्म एक्स के मकसद की गणना सीधे कई वेइल कोहोमोलॉजी सिद्धांतों एच के बारे में सारी जानकारी देती है*Betti(एक्स), एच*DR(एक्स) आदि।

ग्रोथेंडिक से शुरुआत करके, लोगों ने कई वर्षों तक इस सिद्धांत को सटीक रूप से परिभाषित करने का प्रयास किया है।

प्रेरक कोहोमोलॉजी

प्रेरक कोहोलॉजी का आविष्कार बीजगणितीय के-सिद्धांत के माध्यम से मिश्रित मकसदों के निर्माण से पहले किया गया था। उपरोक्त श्रेणी इसे पुनः परिभाषित करने का एक स्पष्ट तरीका प्रदान करती है

जहाँ n और m पूर्णांक हैं और टेट ऑब्जेक्ट की एम-वें टेंसर शक्ति है जो वोएवोडस्की की सेटिंग में जटिल है -2 द्वारा स्थानांतरित किया गया, और [एन] का मतलब त्रिकोणीय श्रेणी में सामान्य त्रिकोणीय श्रेणी है।

मकसदों से संबंधित अनुमान

बीजगणितीय चक्रों पर मानक अनुमान सबसे पहले बीजगणितीय चक्रों और वेइल कोहोमोलॉजी सिद्धांतों की परस्पर क्रिया के संदर्भ में तैयार किए गए थे। शुद्ध मकसदों की श्रेणी इन अनुमानों के लिए एक श्रेणीबद्ध रूपरेखा प्रदान करती है।

मानक अनुमान आमतौर पर बहुत कठिन माने जाते हैं और सामान्य स्थिति में खुले होते हैं। बॉम्बिएरी के साथ ग्रोथेंडिक ने मानक अनुमानों को मान्य मानते हुए, वेइल अनुमानों (जो डेलिग्ने द्वारा विभिन्न माध्यमों से सिद्ध किए गए हैं) का एक सशर्त (बहुत छोटा और सुरुचिपूर्ण) प्रमाण तैयार करके प्रेरक दृष्टिकोण की गहराई दिखाई।

उदाहरण के लिए, कुनेथ मानक अनुमान, जो बीजीय चक्रों के अस्तित्व को बताता है πi ⊂ X × X विहित प्रोजेक्टर H को प्रेरित करता है*(एक्स) → एचi(X) ↣ H*(एक्स) (किसी भी वेइल कोहोमोलॉजी एच के लिए) का तात्पर्य है कि प्रत्येक शुद्ध मकसद एम वजन के वर्गीकृत टुकड़ों में विघटित होता है: एम = ⨁Grnएम. शब्दावली भार चिकनी प्रक्षेप्य विविधता के डी-रैम कोहोमोलॉजी के समान अपघटन से आता है, हॉज सिद्धांत देखें।

अनुमान डी, बीजगणितीय चक्रों के संख्यात्मक और समतुल्य संबंध की सहमति बताते हुए, समरूप और संख्यात्मक समतुल्यता के संबंध में शुद्ध मकसदों की समतुल्यता का तात्पर्य करता है। (विशेष रूप से मकसदों की पूर्व श्रेणी वेइल कोहोमोलॉजी सिद्धांत की पसंद पर निर्भर नहीं होगी)। जैनसेन (1992) ने निम्नलिखित बिना शर्त परिणाम साबित किया: किसी क्षेत्र पर (शुद्ध) मकसदों की श्रेणी एबेलियन और अर्धसरल है यदि और केवल यदि चुना गया तुल्यता संबंध संख्यात्मक तुल्यता है।

हॉज अनुमान को मकसदों का उपयोग करके बड़े करीने से पुनर्निर्मित किया जा सकता है: यह तर्कसंगत गुणांक (एक उपक्षेत्र पर) के साथ किसी भी शुद्ध मकसद को मैप करने वाले हॉज अहसास को मानता है का ) इसकी हॉज संरचना एक पूर्ण फ़ंक्टर है (तर्कसंगत हॉज संरचनाएं)। यहां शुद्ध मकसद का अर्थ सजातीय तुल्यता के संबंध में शुद्ध मकसद से है।

इसी तरह, टेट अनुमान इसके बराबर है: तथाकथित टेट अहसास, अर्थात ℓ-एडिक कोहोमोलॉजी, एक पूर्ण फ़ंक्टर है (होमोलॉजिकल तुल्यता तक शुद्ध मकसद, आधार क्षेत्र k के पूर्ण गैलोज़ समूह का निरंतर समूह प्रतिनिधित्व), जो अर्ध-सरल अभ्यावेदन में मान लेता है। (हॉज एनालॉग के स्थिति में बाद वाला हिस्सा स्वचालित है)।

तन्नाकियन औपचारिकता और प्रेरक गैलोज़ समूह

(अनुमानात्मक) प्रेरक गैलोइस समूह को प्रेरित करने के लिए, एक फ़ील्ड k तय करें और फ़ैक्टर पर विचार करें

k के परिमित वियोज्य विस्तार K → k के निरपेक्ष गैलोज़ समूह की (निरंतर) सकर्मक क्रिया के साथ गैर-रिक्त परिमित सेट

जो K को k के बीजगणितीय समापन में K के एम्बेडिंग के (परिमित) सेट पर मैप करता है। गैलोइस सिद्धांत में इस फ़ैक्टर को श्रेणियों के तुल्यता के रूप में दिखाया गया है। ध्यान दें कि फ़ील्ड 0-आयामी हैं। इस प्रकार के मकसदों को आर्टिन मकसद कहा जाता है। द्वारा -उपरोक्त वस्तुओं को रैखिक करते हुए, उपरोक्त को व्यक्त करने का दूसरा तरीका यह कहना है कि आर्टिन मकसद परिमित के बराबर हैं -गैलोइस समूह की एक कार्रवाई के साथ वेक्टर रिक्त स्थान।

प्रेरक गैलोज़ समूह का मकसद उपरोक्त तुल्यता को उच्च-आयामी विविधता तक विस्तारित करना है। ऐसा करने के लिए, तन्नाकियन श्रेणी सिद्धांत (तन्नाका-क्रेन द्वैत पर वापस जाते हुए, लेकिन एक विशुद्ध बीजगणितीय सिद्धांत) की तकनीकी मशीनरी का उपयोग किया जाता है। इसका मकसद बीजगणितीय चक्र सिद्धांत में उत्कृष्ट प्रश्नों, हॉज अनुमान और टेट अनुमान दोनों पर प्रकाश डालना है। वेइल कोहोमोलॉजी सिद्धांत एच को ठीक करें। यह एम से एक फ़नकार देता हैnum(संख्यात्मक तुल्यता का उपयोग करके शुद्ध मकसद) परिमित-आयामी तक -वेक्टर रिक्त स्थान. यह दिखाया जा सकता है कि पूर्व श्रेणी एक तन्नाकियन श्रेणी है। समरूप और संख्यात्मक तुल्यता की समतुल्यता को मानते हुए, अर्थात उपरोक्त मानक अनुमान डी, फ़ैक्टर एच एक सटीक वफादार टेंसर-फ़ंक्टर है। तन्नाकियन औपचारिकता को लागू करते हुए, कोई यह निष्कर्ष निकालता है कि एमnumबीजगणितीय समूह जी के समूह प्रतिनिधित्व की श्रेणी के बराबर है, जिसे प्रेरक गैलोज़ समूह के रूप में जाना जाता है।

प्रेरक गैलोज़ समूह मकसदों के सिद्धांत के लिए वही है जो ममफोर्ड-टेट समूह हॉज सिद्धांत के लिए है। फिर से मोटे तौर पर कहें तो, हॉज और टेट अनुमान अपरिवर्तनीय सिद्धांत के प्रकार हैं (यदि कोई सही परिभाषाएँ स्थापित करता है, तो वे स्थान जो नैतिक रूप से बीजगणितीय चक्र हैं, उन्हें एक समूह के तहत अपरिवर्तनीयता द्वारा चुना जाता है)। प्रेरक गैलोज़ समूह के पास आसपास का प्रतिनिधित्व सिद्धांत है। (यह जो नहीं है, वह एक गैलोज़ समूह है; हालाँकि टेट अनुमान और ईटेल कोहोमोलॉजी पर गैलोज़ अभ्यावेदन के संदर्भ में, यह गैलोज़ समूह की छवि की भविष्यवाणी करता है, या, अधिक सटीक रूप से, इसके लाई बीजगणित।)

यह भी देखें

संदर्भ

सर्वेक्षण आलेख

  • Beilinson, Alexander; Vologodsky, Vadim (2007), A DG guide to Voevodsky's motives, p. 4004, arXiv:math/0604004, Bibcode:2006math......4004B (अपेक्षाकृत संक्षिप्त प्रमाणों के साथ तकनीकी परिचय)
  • परिमित क्षेत्रों पर मकसद - जे.एस. मिलन
  • Mazur, Barry (2004), "What is ... a motive?" (PDF), Notices of the American Mathematical Society, 51 (10): 1214–1216, ISSN 0002-9920, MR 2104916 (डमी पाठ के लिए मकसद)।
  • Serre, Jean-Pierre (1991), "Motifs" (PDF), Astérisque (in French) (198): 11, 333–349 (1992), ISSN 0303-1179, MR 1144336, archived from the original (PDF) on 2022-01-10{{citation}}: CS1 maint: unrecognized language (link) (फ्रेंच में मकसदों का उच्च स्तरीय परिचय)।
  • Tabauda, Goncalo (2011), "A guided tour through the garden of noncommutative motives", Journal of K-theory, arXiv:1108.3787

पुस्तकें

संदर्भ साहित्य

भविष्य की दिशाएँ

बाहरी संबंध