गणनात्मक ज्यामिति

From alpha
Revision as of 15:53, 24 July 2023 by Neeraja (talk | contribs) (added Category:Vigyan Ready using HotCat)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Jump to navigation Jump to search

गणित में, एन्यूमरेटिव ज्यामिति बीजगणितीय ज्यामिति की शाखा है, जो मुख्य रूप से प्रतिच्छेदन सिद्धांत के माध्यम से, ज्यामितीय प्रश्नों के समाधानों की संख्या की गणना करने से संबंधित है।

इतिहास

अपोलोनियस की समस्या एन्यूमरेटिव ज्यामिति के प्रारंभिक उदाहरणों में से एक है। यह समस्या उन वृत्तों की संख्या और निर्माण के बारे में पूछती है जो दिए गए तीन वृत्तों, बिंदुओं या रेखाओं की स्पर्शरेखा हैं। सामान्यतः, दिए गए तीन वृत्तों की समस्या के आठ समाधान होते हैं, जिन्हें 23 के रूप में देखा जा सकता है, प्रत्येक स्पर्शरेखा स्थिति वृत्तों के स्थान पर एक द्विघात स्थिति लगाती है। चूँकि, दिए गए वृत्तों की विशेष व्यवस्था के लिए, समाधानों की संख्या 0 (कोई समाधान नहीं) से लेकर छह तक कोई भी पूर्णांक हो सकती है; ऐसी कोई व्यवस्था नहीं है जिसके लिए अपोलोनियस की समस्या के सात समाधान हों।

मुख्य उपकरण

प्राथमिक से लेकर अधिक उन्नत तक कई उपकरण सम्मिलित हैं:

  • आयाम गणना
  • बेज़ौट का प्रमेय
  • शुबर्ट कैलकुलस, और कोहोलॉजी में अधिक सामान्यतः विशिष्ट वर्ग
  • सहसंयोजकता के साथ प्रतिच्छेदनों की गणना का संबंध पोंकारे डुअलिटी है
  • कभी-कभी क्वांटम कोहोमोलॉजी के सिद्धांत के माध्यम से वक्रों, मानचित्रों और अन्य ज्यामितीय वस्तुओं के मॉड्यूलि स्थानों का अध्ययन किया जाता है। क्वांटम कोहोमोलॉजी, ग्रोमोव-विटन इनवेरिएंट्स और मिरर सिमिट्री (स्ट्रिंग सिद्धांत) के अध्ययन ने क्लेमेंस कंजेक्टर में महत्वपूर्ण प्रगति दी।

एन्यूमरेटिव ज्यामिति प्रतिच्छेदन सिद्धांत से बहुत निकटता से जुड़ी हुई है।

शुबर्ट कैलकुलस

उन्नीसवीं शताब्दी के अंत में, हरमन शूबर्ट के हाथों, एन्यूमरेटिव ज्यामिति का शानदार विकास हुआ।[1] उन्होंने इसे शूबर्ट कैलकुलस के उद्देश्य से प्रस्तुत किया, जो व्यापक क्षेत्रों में मौलिक ज्यामितीय और टोपोलॉजिकल मान सिद्ध हुआ है। एन्यूमरेटिव ज्यामिति की विशिष्ट आवश्यकताओं पर तब तक ध्यान नहीं दिया गया जब तक कि 1960 और 1970 (उदाहरण के लिए स्टीवन क्लेमन द्वारा बताया गया) के दशक में उन पर कुछ और ध्यान नहीं दिया गया। प्रतिच्छेदन संख्याओं को कठोरता से परिभाषित (आंद्रे वेइल द्वारा उनके मूलभूत कार्यक्रम 1942-6 के भाग के रूप में, और फिर बाद में) किया गया था, किन्तु इससे एन्यूमरेटिव प्रश्नों का उचित क्षेत्र समाप्त नहीं हुआ।

फ्यूज फैक्टर और हिल्बर्ट की पंद्रहवीं समस्या

जैसा कि निम्नलिखित उदाहरण से पता चलता है, आयाम गणना और बेज़ाउट के प्रमेय का सरल अनुप्रयोग गलत परिणाम देता है। इन समस्याओं के जवाब में, बीजगणितीय ज्यामिति ने अस्पष्ट फ्यूज फैक्टर प्रस्तुत किए, जिन्हें दशकों बाद ही सख्ती से उचित ठहराया गया था।

उदाहरण के लिए, प्रक्षेप्य तल में दी गई पांच रेखाओं के स्पर्शरेखा वाले शंकु खंडों की गणना करें।[2] शांकव आयाम 5 के एक प्रक्षेप्य स्थान का निर्माण करते हैं, उनके छह गुणांकों को सजातीय निर्देशांक के रूप में लेते हैं, और पांच बिंदु एक शांकव निर्धारित करते हैं, यदि बिंदु सामान्य रैखिक स्थिति में हैं, क्योंकि किसी दिए गए बिंदु से निकलने पर एक रैखिक स्थिति लागू होती है। इसी प्रकार, किसी दी गई रेखा L की स्पर्शरेखा (स्पर्शरेखा दो गुणन के साथ प्रतिच्छेदन है) एक द्विघात स्थिति है, इसलिए P5 में एक चतुर्भुज निर्धारित किया गया है। चूँकि, ऐसे सभी चतुर्भुजों से युक्त भाजक की रैखिक प्रणाली आधार बिंदुपथ के बिना नहीं है। वास्तविक में ऐसे प्रत्येक चतुर्भुज में वेरोनीज़ सतह होती है, जो शंकु

(aX + bY + cZ)2=0

को 'दोहरी रेखाएँ' कहलाती है। इसका कारण यह है कि एक दोहरी रेखा समतल में प्रत्येक रेखा को प्रतिच्छेद करती है, क्योंकि प्रक्षेप्य तल में रेखाएं बहुलता दो के साथ प्रतिच्छेद करती हैं क्योंकि यह दोगुनी होती है, और इस प्रकार एक गैर-अपक्षयी शंकु के रूप में समान प्रतिच्छेदन स्थिति (बहुलता दो का प्रतिच्छेदन) को संतुष्ट करती है जो रेखा के स्पर्शरेखा होती है।

सामान्य बेज़ाउट प्रमेय कहता है कि 5-स्थान में 5 सामान्य चतुर्भुज 32 = 25 बिंदुओं पर प्रतिच्छेद करेंगे। किन्तु यहां प्रासंगिक चतुर्भुज सामान्य स्थिति में नहीं हैं। 32 में से 31 को घटाया जाना चाहिए और वेरोनीज़ को जिम्मेदार ठहराया जाना चाहिए, जिससे सही उत्तर (ज्यामिति के दृष्टिकोण से) 1 छोड़ा जा सके। 'डेजेनेरेट' स्थितियों के लिए प्रतिच्छेदन को जिम्मेदार ठहराने की यह प्रक्रिया फ्यूज फैक्टर का एक विशिष्ट ज्यामितीय परिचय है।

हिल्बर्ट की पंद्रहवीं समस्या इन हस्तक्षेपों की स्पष्ट रूप से स्वैच्छिक प्रकृति पर नियंत्रण पाना था; यह पहलू शुबर्ट कैलकुलस के मूलभूत प्रश्न से भी आगे जाता है।

क्लेमेंस कंजेक्टर

1984 में हर्बर्ट क्लेमेंस ने क्विंटिक थ्रीफोल्ड पर परिमेय वक्रों की संख्या की गणना का अध्ययन किया और निम्नलिखित कंजेक्टर पर पहुँचे।

मान लें कि एक सामान्य क्विंटिक थ्रीफोल्ड एक धनात्मक पूर्णांक हैं, तो पर डिग्री के साथ परिमेय वक्रों की केवल एक सीमित संख्या होती है। यह

कंजेक्टर स्थितियां में समाधान किया गया है, किन्तु उच्च के लिए अभी भी विवृत है।

1991 में स्ट्रिंग सैद्धांतिक दृष्टिकोण से में क्विंटिक थ्रीफोल्ड पर दर्पण समरूपता के बारे में पेपर[3] सभी के लिए पर डिग्री d परिमेय वक्रों की संख्या देता है। इससे पहले, बीजगणितीय जियोमीटर केवल के लिए इन संख्याओं की गणना कर सकते थे।

उदाहरण

बीजगणितीय ज्यामिति में गणना के कुछ ऐतिहासिक रूप से महत्वपूर्ण उदाहरणों में सम्मिलित हैं:

  • 2 अंतरिक्ष में 4 सामान्य रेखाओं से मिलने वाली रेखाओं की संख्या
  • 8 3 सामान्य वृत्तों के स्पर्शरेखा वृत्तों (अपोलोनियस की समस्या) की संख्या।
  • 27 चिकनी घन सतह (जॉर्ज सैल्मन और आर्थर केली) पर रेखाओं की संख्या
  • 2875 एक सामान्य पंचक पर रेखाओं की संख्या थ्रीफोल्ड
  • 3264 सामान्य स्थिति (माइकल चासल्स) में स्टीनर की शंकु समस्या की संख्या
  • 609250 एक सामान्य क्विंटिक पर शंकुओं की संख्या थ्रीफोल्ड
  • 4407296 8 सामान्य चतुर्भुज सतहों पर स्पर्शरेखा वाले शंकुओं की संख्या फुल्टन (1984, p. 193)
  • 666841088 3-स्पेस (शुबर्ट 1879, p.106) (फुल्टन 1984, p. 193) में सामान्य स्थिति में दिए गए 9 क्वाड्रिक सतहों के स्पर्शरेखा वाले क्वाड्रिक सतहों की संख्या
  • 5819539783680 3-स्पेस (शुबर्ट 1879, p.184) (एस. क्लेमन, एस. ए. स्ट्रोमे & एस. ज़ाम्बो 1987) में सामान्य स्थिति में 12 दी गई चतुर्भुज सतहों के स्पर्शरेखा वाले मुड़े हुए घन वक्रों की संख्या

संदर्भ

  1. Schubert, H. (1879). Kalkül der abzählenden Geometrie (published 1979).
  2. Fulton, William (1984). "10.4". प्रतिच्छेदन सिद्धांत. ISBN 0-387-12176-5.
  3. *Candelas, Philip; de la Ossa, Xenia; Green, Paul; Parks, Linda (1991). "A pair of Calabi-Yau manifolds as an exactly soluble superconformal field theory". Nuclear Physics B. 359 (1): 21–74. doi:10.1016/0550-3213(91)90292-6.


बाहरी संबंध