प्रतिच्छेदन सिद्धांत

From alpha
Jump to navigation Jump to search

गणित में, प्रतिच्छेदन सिद्धांत बीजगणितीय ज्यामिति की मुख्य शाखाओं में से एक है, जहां यह किसी दी गई विविधता की दो उप-विविधताओ के प्रतिच्छेदन के बारे में जानकारी देता है।[1] विविधताओ के लिए सिद्धांत प्राचीन है, जिसकी जड़ें वक्र और उन्मूलन सिद्धांत पर बेज़ाउट के प्रमेय में हैं। दूसरी ओर, टोपोलॉजिकल सिद्धांत अधिक शीघ्रता से एक निश्चित रूप में पहुंच गया।

प्रतिच्छेदन सिद्धांत का अभी भी विकास जारी है। वर्तमान में मुख्य फोकस इस पर है: आभासी मौलिक चक्र क्वांटम प्रतिच्छेदन वलय, ग्रोमोव-विटन सिद्धांत और स्कीम (गणित) से स्टैक (गणित) तक प्रतिच्छेदन सिद्धांत का विस्तार है।[2]

टोपोलॉजिकल इंटरसेक्शन फॉर्म

जुड़ा हुआ स्थान उन्मुखता के लिए M अनेक गुना के आयाम का 2n प्रतिच्छेदन प्रपत्र पर परिभाषित किया गया है n-वें कोहोमोलॉजी समूह (जिसे सामान्यतः 'मध्य आयाम' कहा जाता है) मौलिक वर्ग पर कप उत्पाद के मूल्यांकन द्वारा [M] में H2n(M, ∂M). स्पष्ट रूप से कहा गया है, एक द्विरेखीय रूप है

द्वारा दिए गए

साथ

यह n सम के लिए एक सममित रूप है (इसलिए 2n = 4k दोगुना सम), इस स्थिति में M के हस्ताक्षर को प्रपत्र के हस्ताक्षर के रूप में परिभाषित किया गया है, और n विषम के लिए एक वैकल्पिक रूप है (इसलिए 2n = 4k + 2 एकल है) यहां तक ​​की)। इन्हें समान रूप से ε-सममित रूपों के रूप में संदर्भित किया जा सकता है, जहां सममित और तिरछा-सममित रूपों के लिए क्रमशः ε = (−1)n = ±1 है। कुछ परिस्थितियों में इस फॉर्म को ε-द्विघात रूप में परिष्कृत करना संभव है, चूँकि इसके लिए अतिरिक्त डेटा की आवश्यकता होती है जैसे कि स्पर्शरेखा बंडल का फ़्रेमिंग ओरिएंटेबिलिटी की स्थिति को छोड़ना और इसके अतिरिक्त Z/2Z गुणांक के साथ काम करना संभव है।

ये रूप महत्वपूर्ण टोपोलॉजिकल अपरिवर्तनीय हैं। उदाहरण के लिए, माइकल फ्रीडमैन के एक प्रमेय में कहा गया है कि बस जुड़े हुए सघन स्थान 4-मैनिफोल्ड (लगभग) होमोमोर्फिज्म तक उनके प्रतिच्छेदन रूपों द्वारा निर्धारित होते हैं।

पोंकारे द्वंद्व से, यह पता चलता है कि इसे ज्यामितीय रूप से सोचने का एक विधि है। यदि संभव हो, तो a और b के पोंकारे दोहरे के लिए प्रतिनिधि n-आयामी सबमैनिफोल्ड्स A, B चुनें। फिर λM (a, b) A और B का उन्मुख प्रतिच्छेदन संख्या है, जो अच्छी तरह से परिभाषित है क्योंकि चूंकि A और B के आयाम M के कुल आयाम के योग हैं, इसलिए वह सामान्य रूप से भिन्न-भिन्न बिंदुओं पर प्रतिच्छेद करते हैं। यह शब्दावली प्रतिच्छेदन रूप की व्याख्या करता है।

बीजगणितीय ज्यामिति में प्रतिच्छेदन सिद्धांत

विलियम फुल्टन (गणितज्ञ) इंटरसेक्शन थ्योरी (1984) में लिखते हैं

... यदि A और B एक गैर-एकवचन विविधता X की उप-विविधता हैं, तो प्रतिच्छेदन उत्पाद A · B बीजगणितीय चक्रों का एक समतुल्य वर्ग होना चाहिए जो कि AB, A और B की ज्यामिति से निकटता से संबंधित है। दो चरम स्थिति सबसे अधिक परिचित रहे हैं। यदि प्रतिच्छेदन उचित है, अर्थात dim(AB) = dim A + dim B − dim X दूसरे चरम पर, यदि A = B एक गैर-एकवचन उपविविधता है, तो स्व-प्रतिच्छेदन सूत्र कहता है कि A · B को X में A के सामान्य बंडल के शीर्ष चेर्न वर्ग द्वारा दर्शाया गया है।

एक परिभाषा देने के लिए, सामान्य स्थिति में, प्रतिच्छेदन बहुलता आंद्रे वेइल की 1946 की पुस्तक फाउंडेशन ऑफ अलजेब्रिक ज्योमेट्री की प्रमुख चिंता थी। 1920 के दशक में बार्टेल लिएन्डर्ट वैन डेर वेर्डन या बी का कार्य एल. वैन डेर वेर्डन ने पहले ही प्रश्न का समाधान कर दिया था; बीजगणितीय ज्यामिति के इतालवी स्कूल में विचार अच्छी तरह से ज्ञात थे, किंतु मूलभूत प्रश्नों को उसी भावना से संबोधित नहीं किया गया था।

गतिशील चक्र

बीजगणितीय चक्र V और W को प्रतिच्छेद करने की एक अच्छी तरह से काम करने वाली मशीनरी को प्रश्न में चक्रों के सेट-सैद्धांतिक प्रतिच्छेदन V ∩ W को लेने से कहीं अधिक की आवश्यकता होती है। यदि दो चक्र "अच्छी स्थिति" में हैं तो प्रतिच्छेदन उत्पाद, जिसे V · W कहा जाता है, में दो उप-किस्मों के सेट-सैद्धांतिक प्रतिच्छेदन सम्मिलित होना चाहिए। चूँकि चक्र ख़राब स्थिति में हो सकते हैं, उदा. समतल में दो समानांतर रेखाएँ, या एक समतल जिसमें एक रेखा (3-स्थान में प्रतिच्छेद) होती है। दोनों ही स्थितियों में प्रतिच्छेदनएक बिंदु होना चाहिए, क्योंकि, फिर से, यदि एक चक्र चलता है, तो यह प्रतिच्छेदनहोगा। दो चक्रों V और W के प्रतिच्छेदन को उचित कहा जाता है यदि (सेट-सैद्धांतिक) प्रतिच्छेदन V ∩ W का कोड आयाम क्रमशः V और W के कोड आयामों का योग है, अर्थात "अपेक्षित" मान है।

इसलिए, बीजगणितीय चक्रों पर उचित तुल्यता संबंधों का उपयोग करके चक्रों को चलाने की अवधारणा का उपयोग किया जाता है। समतुल्यता इतनी व्यापक होनी चाहिए कि किन्हीं दो चक्रों V और W को देखते हुए, समतुल्य चक्र V' और W' हों, ताकि प्रतिच्छेदन V' ∩ W' उचित हो। निःसंदेह, दूसरी ओर दूसरे समतुल्य V'' और W'' के लिए, V' ∩ W' को V'' ∩ W'' के समतुल्य होना आवश्यक है।

प्रतिच्छेदन सिद्धांत के प्रयोजनों के लिए, तर्कसंगत तुल्यता सबसे महत्वपूर्ण है। संक्षेप में, दो rविविधता पर आयामी चक्र X यदि कोई परिमेय फलन है तो परिमेय रूप से समतुल्य हैं f एक पर (r + 1)-आयामी उपविविधता Y, अथार्त बीजगणितीय विविधता के कार्य क्षेत्र का एक तत्व k(Y) या समकक्ष एक कार्य f  : YP1, ऐसा है कि VW =  f−1(0) −  f−1(∞), जहाँ f−1(⋅) को बहुलता से गिना जाता है। तर्कसंगत तुल्यता ऊपर वर्णित आवश्यकताओं को पूरा करती है।

प्रतिच्छेदन बहुलता

रेखाओं और परवलय का प्रतिच्छेदन

चक्रों के प्रतिच्छेदन बहुलता की परिभाषा में मार्गदर्शक सिद्धांत एक निश्चित अर्थ में निरंतरता है। निम्नलिखित प्रारंभिक उदाहरण पर विचार करें: एक परवलय y = x2 और एक अक्ष y = x2 का प्रतिच्छेदन 2 · (0, 0) होना चाहिए, क्योंकि यदि चक्रों में से एक चलता है (अभी तक एक अपरिभाषित अर्थ में), तो वास्तव में दो प्रतिच्छेदन होते हैं जब चक्र चित्रित स्थिति में पहुंचते हैं तो वह बिंदु (0, 0) में परिवर्तित हो जाते हैं। (चित्र भ्रामक है क्योंकि परवलय और रेखा y = −3 का स्पष्ट रूप से खाली प्रतिच्छेदन खाली है, क्योंकि केवल समीकरणों के वास्तविक समाधान दर्शाए गए हैं)।

प्रतिच्छेदन बहुलता की पहली पूरी तरह से संतोषजनक परिभाषा सेरे द्वारा दी गई थी: परिवेश विविधता एक्स को सुचारू होने दें (या सभी स्थानीय वलय नियमित हों)। इसके अलावा मान लीजिए कि V और W दो (इरेड्यूसबल कम बंद) उप-विविधता हैं, जैसे कि उनका प्रतिच्छेदन उचित है। निर्माण स्थानीय है, इसलिए विविधता को X के समन्वय वलय में दो आदर्शों I और J द्वारा दर्शाया जा सकता है। Z को सेट-सैद्धांतिक प्रतिच्छेदन VW और z के सामान्य बिंदु का एक अघुलनशील घटक होने दें। प्रतिच्छेदन उत्पाद V · W में Z की बहुलता को परिभाषित किया गया है

उप-विविधताओ के अनुरूप कारक वलय के मरोड़ समूहों के z में X की स्थानीय वलय की लंबाई पर वैकल्पिक योग। इस अभिव्यक्ति को कभी-कभी सेरे के टोर-सूत्र के रूप में जाना जाता है।

टिप्पणियां:

  • पहले योग की लंबाई
    बहुलता का "अनुभवहीन" अनुमान है; चूँकि जैसा कि सेरे दिखाता है, यह पर्याप्त नहीं है।
  • योग सीमित है, क्योंकि नियमित स्थानीय वलय परिमित टोर-आयाम है।
  • यदि का प्रतिच्छेदन V और W उचित नहीं है, उपरोक्त बहुलता शून्य होगी। यदि यह उचित है, तो यह पूर्णतः सकारात्मक है। (दोनों कथन परिभाषा से स्पष्ट नहीं हैं)।
  • वर्णक्रमीय अनुक्रम तर्क का उपयोग करके, यह दिखाया जा सकता है μ(Z; V, W) = μ(Z; W, V).

चाउ रिंग

चाउ वलय निम्नलिखित क्रमविनिमेय प्रतिच्छेदन उत्पाद के साथ बीजगणितीय चक्रों पर मॉड्यूलो तुल्यता संबंधों का समूह है:

जब भी V और W अनुप्रस्थ रूप से मिलते हैं, जहाँ सेट-सैद्धांतिक प्रतिच्छेदन का अपरिवर्तनीय घटकों में अपघटन है।

स्व-प्रतिच्छेदन

दो उप-विविधता दी गईं V और W, कोई उनका प्रतिच्छेदन ले सकता है, किंतु VW यह भी संभव है, यद्यपि अधिक सूक्ष्म, एकल उपविविधता के आत्म-प्रतिच्छेदन को परिभाषित करना है ।

उदाहरण के लिए, एक वक्र C दिया गया है किसी सतह S पर, स्वयं के साथ इसका प्रतिच्छेदन (सेट के रूप में) केवल CC = C स्वयं है: यह स्पष्ट रूप से सही है, किंतु दूसरी ओर असंतोषजनक है: किसी सतह पर दो भिन्न-भिन्न वक्र दिए जाने पर (बिना किसी घटक के समान), वह बिंदुओं के कुछ सेट में प्रतिच्छेद करते हैं, जिन्हें उदाहरण के लिए कोई भी गिन सकता है, एक प्रतिच्छेदन संख्या प्राप्त कर सकता है, और हम किसी दिए गए वक्र के लिए भी ऐसा ही करना चाह सकते हैं: सादृश्य यह है कि भिन्न-भिन्न वक्रों को प्रतिच्छेद करना दो संख्याओं xy को गुणा करने जैसा है: , जबकि स्व-प्रतिच्छेदन एक एकल संख्या x2 का वर्ग करने जैसा है: औपचारिक रूप से, सादृश्य को एक सममित द्विरेखीय रूप (गुणा) और एक द्विघात रूप (वर्गीकरण) के रूप में बताया गया है।

इसका एक ज्यामितीय समाधान यह है कि वक्र C को स्वयं के साथ नहीं, किंतु स्वयं के थोड़े से धकेले गए संस्करण के साथ प्रतिच्छेद किया जाए। समतल में, इसका अर्थ केवल वक्र C को किसी दिशा में अनुवाद करना है, किंतु सामान्य रूप से एक वक्र C' लेने की बात की जाती है जो कि C के रैखिक रूप से समतुल्य है, और प्रतिच्छेदन C·C' की गिनती करता है, इस प्रकार एक प्रतिच्छेदन संख्या प्राप्त करता है, जिसे C दर्शाया जाता है। ·जिसमे यह C. ध्यान दें कि भिन्न-भिन्न वक्रों C और D के विपरीत, प्रतिच्छेदन के वास्तविक बिंदुओं को परिभाषित नहीं किया गया है, क्योंकि वह C′ की पसंद पर निर्भर करते हैं, किंतु "C के स्वयं प्रतिच्छेदन बिंदुओं" की व्याख्या k सामान्य बिंदुओं के रूप में की जा सकती है। C, जहाँ k = C · C. अधिक उचित रूप से, C का स्व-प्रतिच्छेदन बिंदु C का सामान्य बिंदु है, जिसे बहुलता C · C के साथ लिया जाता है।

वैकल्पिक रूप से, कोई इस समस्या को बीजगणितीय रूप से दोहराकर, [C] ∪ [C] और वर्ग को देखकर "हल" कर सकता है (या प्रेरित कर सकता है) यह दोनों एक संख्या देता है, और एक ज्यामितीय व्याख्या का प्रश्न उठाता है। ध्यान दें कि कोहोमोलॉजी कक्षाओं में उत्तीर्ण होना एक वक्र को एक रैखिक प्रणाली द्वारा प्रतिस्थापित करने के समान है।

ध्यान दें कि स्व-प्रतिच्छेदन संख्या ऋणात्मक हो सकती है, जैसा कि नीचे दिए गए उदाहरण से पता चलता है।

उदाहरण

प्रक्षेप्य तल P2 में एक रेखा L पर विचार करें: इसकी स्व-प्रतिच्छेदन संख्या 1 है क्योंकि अन्य सभी रेखाएँ इसे एक बार काटती हैं: कोई L को L′' से दूर धकेल सकता है, और L · L′ = 1 (किसी भी विकल्प के लिए) L', इसलिए L · L = 1. प्रतिच्छेदन रूपों के संदर्भ में, हम कहते हैं कि विमान का प्रकार x2 है (रेखाओं का केवल एक ही वर्ग है, और वह सभी एक दूसरे के साथ प्रतिच्छेद करते हैं)।

ध्यान दें कि एफ़िन प्लेन पर, कोई L को एक समानांतर रेखा की ओर धकेल सकता है, इसलिए (ज्यामितीय रूप से सोचते हुए) प्रतिच्छेदन बिंदुओं की संख्या पुश-ऑफ़ की पसंद पर निर्भर करती है। एक का कहना है कि "एफ़िन प्लेन में एक अच्छा प्रतिच्छेदन सिद्धांत नहीं है", और गैर-प्रोजेक्टिव विविधताओ पर प्रतिच्छेदन सिद्धांत बहुत अधिक कठिन है।

P1 × P1 पर एक रेखा (जिसे P3 में गैर-एकवचन चतुर्भुज Q के रूप में भी समझा जा सकता है) में स्व-प्रतिच्छेदन 0 है, क्योंकि एक रेखा को स्वयं से हटाया जा सकता है। (यह एक शासित सतह है।) प्रतिच्छेदन रूपों के संदर्भ में, हम कहते हैं कि P1 × P1 में xy प्रकार का एक प्रकार है - रेखाओं के दो मूल वर्ग हैं, जो एक दूसरे को एक बिंदु (xy) पर प्रतिच्छेद करते हैं, किंतु शून्य स्व-प्रतिच्छेद होता है (कोई x2 या y2 पद नहीं)।

ब्लो-अप्स

स्व-प्रतिच्छेदन संख्याओं का एक प्रमुख उदाहरण ब्लो-अप का असाधारण वक्र है, जो कि द्विवार्षिक ज्यामिति में एक केंद्रीय ऑपरेशन है। एक बीजगणितीय सतह S को देखते हुए, एक बिंदु पर उड़ने से एक वक्र C बनता है। यह वक्र C अपने जीनस द्वारा पहचाना जा सकता है, जो कि 0 है, और इसकी स्व-प्रतिच्छेदन संख्या, जो −1 है। (यह स्पष्ट नहीं है।) ध्यान दें कि परिणाम के रूप में, P2 और P1 × P1 न्यूनतम सतहें हैं (वह ब्लो-अप नहीं हैं), क्योंकि उनमें नकारात्मक आत्म-प्रतिच्छेदन वाला कोई वक्र नहीं है। वास्तव में, कैस्टेलनोवो का संकुचन प्रमेय विपरीत बताता है: प्रत्येक (−1)-वक्र कुछ ब्लो-अप का असाधारण वक्र है (इसे "उड़ाया जा सकता है")।

यह भी देखें

उद्धरण


संदर्भ

  • Gathman, Andreas, Algebraic Geometry, archived from the original on 2016-05-21, retrieved 2018-05-11
  • Tian, Yichao, Course Notes in Intersection Theory (PDF)[dead link]


ग्रन्थसूची