पुनरावृत्त फलन

From alpha
Jump to navigation Jump to search

बार-बार, स्वयं से बनाया गया,समानता F केंद्र S के सबसे लघु सम पंचभुज को अनुक्रमी संकेंद्र पंचभुज में फैलाता है, कि प्रत्येक की रूपरेखा पिछले पंचकोण के सभी शीर्षों से होकर गुजरता है, जिनमें से यह F के नीचे की छवि है। यदि रूपांतरण F अनिश्चित काल के लिए पुनरावृत्त होता है, फिर A और K दो अनंत सर्पिलों के शुरुआती बिंदु हैं।

गणित में, एक पुनरावृत्त फलन एक फलन X → X (अर्थात्, कुछ समुच्चय X से स्वयं में एक फलन) होता है, जो एक अन्य फलन f : X → X अपने आप में एक निश्चित संख्या में जोड़कर प्राप्त किया जाता है। एक ही कार्य को बार-बार लागू करने की प्रक्रिया को पुनरावृत्ति कहा जाता है। इस विधि में, प्रारंभिक वस्तु से शुरू करके, दिए गए फलन को लागू करने का परिणाम फलन में इनपुट के रूप में फीड किया जाता है, और यह विधि दोहराई जाती है। उदाहरण के लिए दाईं ओर की छवि पर:

L = ( K ),   M = ( K ) = ( K ),
फलन रचना के वृत्त के आकार के प्रतीक के साथ।

कंप्यूटर विज्ञान, आंशिक, गतिशील तंत्र, गणित और पुनर्सामान्यीकरण समूह भौतिकी में पुनरावर्ती कार्यों में अध्ययन का विषयहैं।

परिभाषा

एक समुच्चय X पर पुनरावृत्त फलन की विधिवत् परिभाषा इस प्रकार है।

मान लीजिए X एक समुच्चय हो और f: XX एक फलन हो।

f के n-वें पुनरावृति के रूप में f n को परिभाषित करना ( हंस हेनरिक बर्मन[citation needed][1][2]और जॉन फ्रेडरिक विलियम हर्शेल द्वारा प्रस्तुत एक संकेतन [3][1][4][2]), जहां n एक गैर-ऋणात्मक पूर्णांक , द्वारा:

और
जहां idX X पर तत्समक फलन और fg फलन संरचना को दर्शाता है।वह है,

(fg)(x) = f (g(x)),

सदैव सहचारी

क्योंकि अंकन f n फलन f के पुनरावृत्ति (संरचना) या [[फलन के घातांक|फलन f के घातांक]] दोनों को संदर्भित कर सकता है (उत्तरवर्ती आमतौर पर त्रिकोणमितीय में उपयोग किया जाता है), कुछ गणितज्ञ[citation needed] रचना अर्थ को निरूपित करने के लिए का उपयोग करते हैं, हम चुनते हैं फलन f(x) के n-वें पुनरावृत्ति के लिए fn(x) लिखने के लिए, उदाहरण के लिए, f∘3(x) अर्थ f(f(f(x))) / इसी उद्देश्य के लिए, f [n](x) का उपयोग बेंजामिन पीयर्स द्वारा किया गया था[5][2][nb 1] जबकि अल्फ्रेड प्रिंगशाइम और जूल्स मोल्क ने इसके बजाय nf(x) का सुझाव दिया था। ।[6][2][nb 2]


एबेलियन गुण और पुनरावृत्ति अनुक्रम

सामान्य तौर पर, निम्न समीकरण सभी गैर-ऋणात्मक पूर्णांकों m और n के लिए लागू होता है

यह संरचनात्मक रूप से घातीय गुण के समान है कि aman = am + n, यानी विशेष स्थिति f(x) = ax

सामान्य तौर पर, स्वेच्छ व्यापक (ऋणात्मक, गैर-पूर्णांक, आदि) सूचकांक m और n के लिए, इस संबंध को अनुवाद प्रकार्यात्मक समीकरण सीएफ कहा जाता है, श्रोडर का समीकरण और एबेल समीकरण। लघुगणकीय पैमाने पर, यह चेबीशेव बहुपदों के नेस्टिंग गुण को कम कर देता है, Tm(Tn(x)) = Tm n(x), चूंकि Tn(x) = cos(n arccos(x)) /

संबंध (f m)n(x) = (f n)m(x) = f mn(x) भी अवलंबन करता है, जो घातांक (am)n = (an)m = amn के गुण के अनुरूप है।

प्रकार्यों के अनुक्रम f n को पिकार्ड अनुक्रम कहा जाता है,[7][8] जिसका नाम चार्ल्स एमिल पिकार्ड के नाम पर रखा गया है।

x में दिए गए x के लिए, मानों के अनुक्रम fn(x) को x की सीमा कहा जाता है।

यदि f n (x) = f n+m (x) किसी भी पूर्णांक m>0 के लिए, कक्षा को आवधिक कक्षा कहा जाता है। किसी दिए गए x के लिए m का ऐसा सबसे छोटा मान कक्षीय अवधि कहलाता है। बिंदु x को ही पुनरावृत्ति बिन्दु कहा जाता है। कंप्यूटर विज्ञान में चक्र का पता लगाने की समस्या कक्षा में पहले आवधिक बिंदु और कक्षा की अवधि खोजने की कलन विधि समस्या है।

निश्चित बिंदु

यदि x में कुछ x के लिए f(x) = x (अर्थात् x की कक्षीय अवधि 1 है), तो x को पुनरावर्ती अनुक्रम का एक निश्चित बिंदु कहा जाता है। निश्चित बिन्दुओं के समुच्चय को अक्सर : फिक्स (एफ) के रूप में दर्शाया जाता है। कई निश्चित-बिंदु प्रमेय मौजूद हैं जो विभिन्न स्थितियों के तहत निश्चित बिंदुओं के अस्तित्व की गारंटी देते हैं, जिसमें बनच निश्चित बिंदु प्रमेय और ब्रोवर निश्चित बिंदु प्रमेय सम्मिलित हैं।

निश्चित बिंदु पुनरावृत्ति द्वारा प्रस्तुत अनुक्रमों के अभिसरण त्वरण को तेज करने के लिए कई प्रविधि हैं।[9] उदाहरण के लिए, ऐटकेन विधि पुनरावृत्तियों पर लागू होती है जिसे स्टीफ़ेंसन की विधि के रूप में जाना जाता है, और द्विघात अभिसरण प्राप्त करता है।

सीमित व्यवहार

पुनरावृति पर, कोई यह पा सकता है कि ऐसे समुच्चय हैं जो संकुच होते हैं और एक बिंदु की ओर अभिसरण करते हैं। ऐसी स्थिति में, जिस बिंदु पर अभिसरण होता है उसे एक आकर्षक निश्चित बिंदु के रूप में जाना जाता है। इसके विपरीत, पुनरावृति एक बिंदु से अलग होने वाले बिंदुओं का आभास दे सकता है; अस्थिर निश्चित बिंदु के स्थिति में यही होगा।[10] जब कक्षा के बिंदु एक या एक से अधिक सीमाओं में अभिसरित होते हैं, तो कक्षा के अभिसरण बिंदुओं के समुच्चय को सीमा समुच्चय या ω-सीमा समुच्चय के रूप में जाना जाता है।

आकर्षण और प्रतिकर्षण के विचार समान रूप से समान होते हैं; पुनरावृत्ति के तहत छोटे प्रतिवेश के व्यवहार के अनुसार, पुनरावृत्तियों को स्थिर समुच्चय और अस्थिर समुच्चय में वर्गीकृत किया जा सकता है। ( विश्लेषिक फलन की अनंत रचनाएं भी देखें।)

अन्य सीमित व्यवहार संभव हैं; उदाहरण के लिए, अस्थिर बिंदु वे बिंदु होते हैं जो दूर चले जाते हैं, और जहां से शुरू हुए थे, उसके करीब कभी नहीं लौटते हैं।

निश्चर माप

यदि कोई व्यक्तिगत बिंदु गतिकी के बजाय घनत्व वितरण के विकास पर विचार करता है, तो सीमित व्यवहार निश्चर माप द्वारा दिया जाता है। इसे बार-बार पुनरावृत्तियों के तहत बिंदु-समूह या चूर्ण-समूह के व्यवहार के रूप में देखा जा सकता है। निश्चर माप रूले-फ्रोबेनियस-पेरॉन प्रचालक या स्थानांतरण प्रचालक का एक ईजेनस्टेट है, जो 1 के ईजेनवेल्यू के अनुरूप है। छोटे ईजेनवेल्यूज अस्थिर, क्षय अवस्था के अनुरूप हैं।

सामान्य तौर पर, क्योंकि बार-बार पुनरावृत्ति एक बदलाव से मेल खाती है,और उसके सहायक,कोपमैन प्रचालक दोनों को शिफ्ट अंतरालक पर शिफ्ट प्रचालक की कार्रवाई के रूप में व्याख्या की जा सकती है। परिमित प्रकार के उपशिफ्ट का सिद्धांत कई पुनरावृत्त फलन में सामान्य अंतर्दृष्टि प्रदान करता है, विशेष रूप से वे जो अराजकता की ओर ले जाते हैं।

भिन्नात्मक पुनरावृति और प्रवाह, और ऋणात्मक पुनरावृति

g: RR ,f: R+R+, f(x) = sin(x) का एक निरर्थक 5वां मूल फलन है। f(π⁄6) = 1/2 = g5(π⁄6) की गणना दिखाई गई है।

संकेतन f1/n का उपयोग सावधानी से किया जाना चाहिए जब समीकरण gn(x) = f(x) के कई समाधान हैं, जो आम तौर पर होता है, जैसा कि तत्समक मानचित्र के प्रकार्यात्मक मूल के बैबेज के समीकरण में होता है। उदाहरण के लिए, के लिए n = 2 और f(x) = 4x − 6 के लिए,दोनों g(x) = 6 − 2x और g(x) = 2x − 2 समाधान हैं; इसलिए व्यंजक f 1/2(x) किसी अद्वितीय फलन का प्रतिनिधित्व नहीं करता है, जैसे अनेक बीजगणितीय मूल वाली संख्याएँ। यह परिणाम अंकगणित में "0/0" व्यंजक के समान है। यदि f के प्रक्षेत्र को पर्याप्त रूप से बढ़ाया जा सकता है, तो f का एक निरर्थक मूल चित्र हमेशा प्राप्त किया जा सकता है, चुनी गई मूल कक्षा आमतौर पर अध्ययन के तहत कक्षा से संबंधित होती हैं।

किसी फलन के आंशिक पुनरावृत्ति को परिभाषित किया जा सकता है: उदाहरण के लिए, फलन f का अर्द्ध पुनरावृति एक फलन g है जैसे कि g(g(x)) = f(x) |[11] यह फलन g(x) को f 1/2(x) के रूप में सूचक संकेतन का उपयोग करके लिखा जा सकता है। इसी प्रकार, f 1/3(x) एक फलन परिभाषित है जैसे कि f1/3(f1/3(f1/3(x))) = f(x), जबकि f2/3(x) को बराबर परिभाषित किया जा सकता है f 1/3(f1/3(x)) के रूप में, और इसी तरह, सभी पहले बताए गए सिद्धांत पर आधारित हैं कि f mf n = f m + n | इस विचार को सामान्यीकृत किया जा सकता है ताकि पुनरावृति संख्या n सतत मापदंड बन जाए, एक सतत कक्षा का सतत "समय"।[12][13]

ऐसी स्थिति में, पद्धति को प्रवाह के रूप में संदर्भित किया जाता है। (cf. नीचे संयुग्मन पर अनुभाग।)

ऋणात्मक पुनरावृत्त फलन व्युत्क्रम और उनकी रचनाओं के अनुरूप हैं। उदाहरण के लिए, f −1(x) f का सामान्य व्युत्क्रम है,जबकि f −2(x) इसका अपना व्युत्क्रम है, यानी f −2(x) = f −1(f −1(x)) | भिन्नात्मक ऋणात्मक पुनरावृत्तियों को भिन्नात्मक घनात्मक के अनुरूप परिभाषित किया जाता है; उदाहरण के लिए, f −1/2(x) परिभाषित किया गया है ताकि f −1/2(f −1/2(x)) = f −1(x), या,समतुल्य रूप से,ऐसा हो कि f −1/2(f 1/2(x)) = f 0(x) = x |

भिन्नात्मक पुनरावृत्ति के लिए कुछ सूत्र

एक निश्चित बिंदु का उपयोग करते हुए भिन्नात्मक पुनरावृति के लिए एक श्रेणी सूत्र खोजने की कई विधि में से एक इस प्रकार है।[14]

  1. पहले फलन के लिए एक निश्चित बिंदु निर्धारित करें जैसे f(a) = a.
  2. वास्तविक के अनुरूप सभी n के लिए f n(a) = a परिभाषित करें। यह, कुछ मायनों में, भिन्नात्मक पुनरावृति पर डालने के लिए सबसे स्वाभाविक अतिरिक्त स्थिति है।
  3. टेलरश्रेणी के रूप में निश्चित बिंदु a के आस-पास fn(x) का विस्तार करें,
  4. विस्तृत करें
  5. fk(a) = a,के लिए, कोई भी स्थानापन्न करें
  6. पदों को सरल बनाने के लिए ज्यामितीय श्रेढ़ी का उपयोग करें,
    एक विशेष स्थिति है जब f '(a) = 1,

यह अनिश्चित काल के लिए किया जा सकता है, हालांकि अक्षम रूप से, क्योंकि बाद की स्थितियां तेजी से जटिल हो जाती हैं। संयुग्मता पर निम्नलिखित खंड में एक अधिक व्यवस्थित प्रक्रिया की रूपरेखा दी गई है।

उदाहरण 1

उदाहरण के लिए, समुच्चयिंग f(x) = Cx + D निश्चित बिंदु a = D/(1 − C) देता है,इसलिए उपरोक्त सूत्र केवल समाप्त होता है

जो जांच के लिए निरर्थक है।

उदाहरण 2

मान ज्ञात कीजिए जहां यह n बार किया जाता है (और संभवतः प्रक्षेपित मान जब n पूर्णांक नहीं है)। हमारे पास f(x) = 2x है | एक नियत बिंदु a = f(2) = 2 है। तो x = 1 समुच्चय करें और f n (1) 2 के निश्चित बिंदु मान के चारों ओर विस्तारित है तो एक अनंत श्रेणी है,

जो, केवल पहले तीन पदों को लेते हुए, पहले दशमलव स्थान पर सही होता है जब n धनात्मक-cf होता है। टेट्रेशन: f n(1) = n2 | (अन्य निश्चित बिंदु a = f(4) = 4 का उपयोग करने से श्रेणी अलग हो जाती है।)

n = −1 के लिए श्रेणी प्रतिलोम फलन की गणना करती है 2+ln x/ln 2.

उदाहरण 3

फलन f(x) = xb के साथ, श्रेणी प्राप्त करने के लिए निश्चित बिंदु 1 के चारों ओर विस्तार करें

जो केवल x(bn ) की टेलरश्रेणी है जो 1 के आसपास विस्तारित है।

संयुग्मन

यदि f और g दो पुनरावृत्त फलन हैं, और एक सममिति h मौजूद है जैसे कि g = h−1fh , तो f और g को स्थैतिक रूप से संयुग्मित कहा जाता है।

स्पष्ट रूप से, सममिति संयुग्मन को पुनरावर्तन के तहत संरक्षित किया जाता है, जैसे gn = h−1  ○ f nh | इस प्रकार, यदि कोई एक पुनरावृत्त फलन पद्धति के लिए हल कर सकता है, तो उसके पास सभी स्थैतिक रूप से संयुग्मित पद्धतिय़ों के लिए भी समाधान हैं। उदाहरण के लिए, टेंट का नक्शा भौगोलिक रूप से तार्किक मानचित्र के साथ जुड़ा हुआ है। एक विशेष स्थिति के रूप में, f(x) = x + 1 लेते हुए, g(x) = h−1(h(x) + 1) का पुनरावृत्त होता है

gn(x) = h−1(h(x) + n), किसी भी फलन h के लिए।

प्रतिस्थापन करने से x = h−1(y) = ϕ(y) प्राप्त होता है

g(ϕ(y)) = ϕ(y+1),  एबेल समीकरण के रूप में जाना जाने वाला एक रूप।

यहां तक ​​​​कि एक पूर्णतः सममिति की अनुपस्थिति में, एक निश्चित बिंदु के पास, यहां x = 0, f(0) = 0 पर लिया जाता है, अक्सर एक [15] फलनΨ के लिए श्रोडर के समीकरण को हल किया जा सकता है, जो f(x) बनाता है स्थैतिक रूप से एक मात्र विस्तार के लिए संयुग्मित, g(x) = f '(0) x, अर्थात

f(x) = Ψ−1(f '(0) Ψ(x)) |.

इस प्रकार, इसकी पुनरावृति कक्षा, या प्रवाह, उपयुक्त परिस्थितियों में (जैसे, f '(0) ≠ 1), एकपदी कक्षा के संयुग्म के बराबर है,

Ψ−1(f '(0)n Ψ(x)),

जहां n इस व्यंजक में एक साधारण चर घातांक के रूप में कार्य करता है: प्रकार्यात्मक पुनरावृत्ति को गुणन में कम हो जाती है! यहाँ, हालांकि, चर घातांक n को पूर्णांक या धनात्मक होने की आवश्यकता नहीं है, और पूर्ण कक्षा के लिए विकास का एक सतत "समय" है:[16] एक पिकार्ड अनुक्रम का एकाभ (cf. परिवर्तन अर्धसमूह) एक पूर्ण सतत समूह के लिए सामान्यीकृत किया जाता है।[17]

पहले अर्ध आवर्तन काल में जीवा फलन (नीला) के पुनरावृत्त। अर्ध-पुनरावृति (नारंगी), यानी जीवा का प्रकार्यात्मक वर्गमूल; उसका प्रकार्यात्मक वर्गमूल, उसके ऊपर चौथाई-पुनरावृत्ति ( काला); और आगे भिन्नात्मक 1/64 वें तक पुनरावृत्त होता है। (नीला) जीवा के नीचे के फलन इसके नीचे छह अभिन्न पुनरावृत्त हैं, दूसरे पुनरावृति (लाल) से शुरू होकर 64 वें पुनरावृति के साथ समाप्त होते हैं। हरे रंग का आवरण त्रिकोण सीमित अशक्त पुनरावृति का प्रतिनिधित्व करता है, सॉटूओथ फलन प्रारंभिक बिंदु के रूप में कार्य करता है जो जीवा फलन की ओर जाता है। असतत रेखा ऋणात्मक पहली पुनरावृति है, अर्थात जीवा (आर्क्सिन) का व्युत्क्रम। (सामान्य शिक्षाशास्त्र वेब-साइट से।[18] अंकन के लिए, [2] देखें।)

यह विधि (प्रमुख ईजेनफंक्शनΨ, cf. कार्लमैन आव्यूह के निर्धारण के बाद) पिछले अनुभाग के कलनविधि के समतुल्य है, यद्यपि, व्यवहार में, अधिक सशक्त और व्यवस्थित।

मार्कोव शृंखला

यदि फलन रैखिक है और एक प्रसंभाव्य आव्यूह द्वारा वर्णित किया जा सकता है, अर्थात एक आव्यूह जिसकी पंक्तियों या स्तंभों का योग एक है, तो पुनरावृत्त पद्धति को मार्कोव शृंखला के रूप में जाना जाता है।

उदाहरण

कई अराजक नक्शें है। जाने-माने पुनरावृत्त फलन में मैंडेलब्रॉट समुच्चय और पुनरावृत्त फलन पद्धति सम्मिलित हैं।

1870 में अर्नस्ट श्रोडर, [19] ने तार्किक मानचित्र की विशेष स्थितियाें पर काम किया , जैसे अराजक स्थिति f(x) = 4x(1 − x), ताकि Ψ(x) = arcsin2(x), इसलिए f n(x) = sin2(2n arcsin(x)) |

श्रोडर ने भी अपनी विधि f(x) = 2x(1 − x), के साथ एक अराजक स्थिति का भी वर्णन किया, जिससे Ψ(x) = −1/2 ln(1 − 2x) प्राप्त होता है। और इसलिए fn(x) = −1/2((1 − 2x)2n − 1) |

यदि f समुच्चय पर समूह अंश फलन है, तो पुनरावृत्त फलन एक मुक्त समूह से मेल खाता है।

अधिकांश फलन में n-वें पुनरावृत्ति के लिए एक स्पष्ट सामान्य बंद-रूप व्यंजक नहीं होता है। नीचे दी गई तालिका मे कुछ सूचीबद्ध है[19] जो ऐसा करते हैं। ध्यान दें कि ये सभी व्यंजक गैर-पूर्णांक और ऋणात्मक n के साथ-साथ गैर-ऋणात्मक पूर्णांक n के लिए भी मान्य हैं।

(नोट देखें)

जहां:

(नोट देखें)

जहां:

  (तर्कसंगत अंतर समीकरण)[20]

जहां:

  ( सामान्य एबेल समीकरण)
(पूर्णांक m के लिए चेबिशेव बहुपद)

नोट: ax2 + bx + c की ये दो विशेष स्थितियाँ ही ऐसी स्थितियाँ हैं जिनका बंद रूप में समाधान है। क्रमशः b = 2 = -a और b = 4 = -a चुनने से, उन्हें तालिका से पहले चर्चा किए गए गैर-अराजक और अराजक तार्किक स्थितियाें में कम कर दिया जाता है।

इनमें से कुछ उदाहरण सरल संयुग्मन से संबंधित हैं। कुछ और उदाहरण, श्रोडर के उदाहरणों के अनिवार्य रूप से सरल संयुग्मन के लिए उल्लेख में पाए जा सकते हैं।[21]


अध्ययन के साधन

आर्टिन-मज़ूर जेटा फलन और स्थानांतरण प्रचालकों के साथ पुनरावृत्त फलन का अध्ययन किया जा सकता है।

कंप्यूटर विज्ञान में

कंप्यूटर विज्ञान में, पुनरावृत्त प्रकार्य पुनरावर्ती प्रकार्यों की एक विशेष स्थिति के रूप में होते हैं, जो बदले में लैम्ब्डा कलन ,या संकीर्ण वाले जैसे व्यापक विषयों के अध्ययन को एंकर करते हैं, जैसे कंप्यूटर प्रोग्राम के सांकेतिक शब्दार्थविज्ञान |

पुनरावृत्त फलन के संदर्भ में परिभाषाएँ

पुनरावृत्त फलन के संदर्भ में दो महत्वपूर्ण फलन को परिभाषित किया जा सकता है। ये संकलन हैं:

और समतुल्य परिणाम:


प्रकार्यात्मक अवकलज

एक पुनरावृत्त फलन का प्रकार्यात्मक अवकलज पुनरावर्ती सूत्र द्वारा दिया जाता है:


असत्य का डेटा ट्रांसपोर्ट समीकरण

g(f(x)). जैसे संयुक्त फलन के श्रेणी विस्तार में पुनरावृत्त फलन होते हैं।

पुनरावृत्ति वेग, या बीटा फलन(भौतिकी) को देखते हुए,

फलन f के nवें पुनरावृति के लिए, पास है [22]
|

उदाहरण के लिए, स्थिर संवहन के लिए, यदि f(x) = x + t, तो v(x) = t |परिणामस्वरूप, g(x + t) = exp(t ∂/∂x) g(x), एक सामान्य विस्थापन प्रचालक द्वारा क्रिया।

इसके विपरीत, ऊपर चर्चा किए गए सामान्य एबेल समीकरण के माध्यम से कोई भी स्वेच्छ ढंग से v(x) दिए गए f(x) निर्दिष्ट कर सकता है,

जहां

यह बात नोट करने से पता चलता है

सतत पुनरावृत्ति सूचकांक t के लिए, फिर, अब एक पादांक के रूप में लिखा गया है, यह एक सतत समूह के असत्य की प्रख्यात घातीय प्राप्ति के बराबर है,

प्रारंभिक प्रवाह वेग v समग्र प्रवाह को निर्धारित करने के लिए पर्याप्त है, घातीय प्राप्ति को देखते हुए जो स्वचालित रूप से अनुवाद प्रकार्यात्मक समीकरण का सामान्य समाधान प्रदान करता है,[23] :

यह भी देखें

टिप्पणियाँ

  1. while f (n) is taken for the [[Derivative#Lagrange's notation|nth derivative]]
  2. Alfred Pringsheim's and Jules Molk's (1907) notation nf(x) to denote function compositions must not be confused with Rudolf von Bitter Rucker's (1982) notation nx, introduced by Hans Maurer (1901) and Reuben Louis Goodstein (1947) for tetration, or with David Patterson Ellerman's (1995) nx pre-superscript notation for roots.


संदर्भ

  1. 1.0 1.1 Herschel, John Frederick William (1820). "Part III. Section I. Examples of the Direct Method of Differences". A Collection of Examples of the Applications of the Calculus of Finite Differences. Cambridge, UK: Printed by J. Smith, sold by J. Deighton & sons. pp. 1–13 [5–6]. Archived from the original on 2020-08-04. Retrieved 2020-08-04. [1] (NB. Inhere, Herschel refers to his 1813 work and mentions Hans Heinrich Bürmann's older work.)
  2. 2.0 2.1 2.2 2.3 Cajori, Florian (1952) [March 1929]. "§472. The power of a logarithm / §473. Iterated logarithms / §533. John Herschel's notation for inverse functions / §535. Persistence of rival notations for inverse functions / §537. Powers of trigonometric functions". A History of Mathematical Notations. Vol. 2 (3rd corrected printing of 1929 issue, 2nd ed.). Chicago, USA: Open court publishing company. pp. 108, 176–179, 336, 346. ISBN 978-1-60206-714-1. Retrieved 2016-01-18. […] §473. Iterated logarithms […] We note here the symbolism used by Pringsheim and Molk in their joint Encyclopédie article: "2logba = logb (logba), …, k+1logba = logb (klogba)."[a] […] §533. John Herschel's notation for inverse functions, sin−1x, tan−1x, etc., was published by him in the Philosophical Transactions of London, for the year 1813. He says (p. 10): "This notation cos.−1e must not be understood to signify 1/cos. e, but what is usually written thus, arc (cos.=e)." He admits that some authors use cos.mA for (cos. A)m, but he justifies his own notation by pointing out that since d2x, Δ3x, Σ2x mean ddx, ΔΔΔ x, ΣΣ x, we ought to write sin.2x for sin. sin. x, log.3x for log. log. log. x. Just as we write dn V=∫n V, we may write similarly sin.−1x=arc (sin.=x), log.−1x.=cx. Some years later Herschel explained that in 1813 he used fn(x), fn(x), sin.−1x, etc., "as he then supposed for the first time. The work of a German Analyst, Burmann, has, however, within these few months come to his knowledge, in which the same is explained at a considerably earlier date. He[Burmann], however, does not seem to have noticed the convenience of applying this idea to the inverse functions tan−1, etc., nor does he appear at all aware of the inverse calculus of functions to which it gives rise." Herschel adds, "The symmetry of this notation and above all the new and most extensive views it opens of the nature of analytical operations seem to authorize its universal adoption."[b] […] §535. Persistence of rival notations for inverse function.— […] The use of Herschel's notation underwent a slight change in Benjamin Peirce's books, to remove the chief objection to them; Peirce wrote: "cos[−1]x," "log[−1]x."[c] […] §537. Powers of trigonometric functions.—Three principal notations have been used to denote, say, the square of sin x, namely, (sin x)2, sin x2, sin2x. The prevailing notation at present is sin2x, though the first is least likely to be misinterpreted. In the case of sin2x two interpretations suggest themselves; first, sin x · sin x; second,[d] sin (sin x). As functions of the last type do not ordinarily present themselves, the danger of misinterpretation is very much less than in case of log2x, where log x · log x and log (log x) are of frequent occurrence in analysis. […] The notation sinnx for (sin x)n has been widely used and is now the prevailing one. […] (xviii+367+1 pages including 1 addenda page) (NB. ISBN and link for reprint of 2nd edition by Cosimo, Inc., New York, USA, 2013.)
  3. Herschel, John Frederick William (1813) [1812-11-12]. "On a Remarkable Application of Cotes's Theorem". Philosophical Transactions of the Royal Society of London. London: Royal Society of London, printed by W. Bulmer and Co., Cleveland-Row, St. James's, sold by G. and W. Nicol, Pall-Mall. 103 (Part 1): 8–26 [10]. doi:10.1098/rstl.1813.0005. JSTOR 107384. S2CID 118124706.
  4. Peano, Giuseppe (1903). Formulaire mathématique (in français). Vol. IV. p. 229.
  5. Peirce, Benjamin (1852). Curves, Functions and Forces. Vol. I (new ed.). Boston, USA. p. 203.
  6. Pringsheim, Alfred; Molk, Jules (1907). Encyclopédie des sciences mathématiques pures et appliquées (in français). Vol. I. p. 195. Part I.
  7. Kuczma, Marek (1968). एक चर में कार्यात्मक समीकरण. Monografie Matematyczne. Warszawa: PWN – Polish Scientific Publishers.
  8. Kuczma, M., Choczewski B., and Ger, R. (1990). पुनरावृत्त कार्यात्मक समीकरण. Cambridge University Press. ISBN 0-521-35561-3.
  9. Carleson, L.; Gamelin, T. D. W. (1993). जटिल गतिकी. Universitext: Tracts in Mathematics. Springer-Verlag. ISBN 0-387-97942-5.
  10. Istratescu, Vasile (1981). Fixed Point Theory, An Introduction, D. Reidel, Holland. ISBN 90-277-1224-7.
  11. "Finding f such that f(f(x))=g(x) given g". MathOverflow.
  12. Aldrovandi, R.; Freitas, L. P. (1998). "डायनेमिकल मैप्स का निरंतर परिवर्तन". J. Math. Phys. 39 (10): 5324. arXiv:physics/9712026. Bibcode:1998JMP....39.5324A. doi:10.1063/1.532574. hdl:11449/65519. S2CID 119675869.
  13. Berkolaiko, G.; Rabinovich, S.; Havlin, S. (1998). "विश्लेषणात्मक पुनरावर्तन के कार्लमैन प्रतिनिधित्व का विश्लेषण". J. Math. Anal. Appl. 224: 81–90. doi:10.1006/jmaa.1998.5986.
  14. "तेतरतीओं.ऑर्ग".
  15. Kimura, Tosihusa (1971). "On the Iteration of Analytic Functions", Funkcialaj Ekvacioj Archived 2012-04-26 at the Wayback Machine 14, 197-238.
  16. Curtright, T. L.; Zachos, C. K. (2009). "विकास प्रोफाइल और कार्यात्मक समीकरण". Journal of Physics A. 42 (48): 485208. arXiv:0909.2424. Bibcode:2009JPhA...42V5208C. doi:10.1088/1751-8113/42/48/485208. S2CID 115173476.
  17. For explicit instance, example 2 above amounts to just f n(x) = Ψ−1((ln 2)n Ψ(x)), for any n, not necessarily integer, where Ψ is the solution of the relevant Schröder's equation, Ψ(2x) = ln 2 Ψ(x). This solution is also the infinite m limit of (f m(x) − 2)/(ln 2)m.
  18. Curtright, T. L. Evolution surfaces and Schröder functional methods.
  19. 19.0 19.1 Schröder, Ernst (1870). "पुनरावृत्त कार्यों के बारे में". Math. Ann. 3 (2): 296–322. doi:10.1007/BF01443992. S2CID 116998358.
  20. Brand, Louis, "A sequence defined by a difference equation," American Mathematical Monthly 62, September 1955, 489–492. online
  21. Katsura, S.; Fukuda, W. (1985). "अराजक व्यवहार दिखाने वाले सटीक रूप से हल करने योग्य मॉडल". Physica A: Statistical Mechanics and Its Applications. 130 (3): 597. Bibcode:1985PhyA..130..597K. doi:10.1016/0378-4371(85)90048-2.
  22. Berkson, E.; Porta, H. (1978). "विश्लेषणात्मक कार्यों और संरचना ऑपरेटरों के सेमिग्रुप". The Michigan Mathematical Journal. 25: 101–115. doi:10.1307/mmj/1029002009. Curtright, T. L.; Zachos, C. K. (2010). "Chaotic maps, Hamiltonian flows and holographic methods". Journal of Physics A: Mathematical and Theoretical. 43 (44): 445101. arXiv:1002.0104. Bibcode:2010JPhA...43R5101C. doi:10.1088/1751-8113/43/44/445101. S2CID 115176169.
  23. Aczel, J. (2006), Lectures on Functional Equations and Their Applications (Dover Books on Mathematics, 2006), Ch. 6, ISBN 978-0486445236.


बाहरी कड़ियाँ

Gill, John (January 2017). "कॉम्प्लेक्स फ़ंक्शंस की अनंत रचनाओं के प्राथमिक सिद्धांत पर एक प्राइमर". Colorado State University.

श्रेणी:गतिशील प्रणालियाँ श्रेणी:भग्न श्रेणी:अनुक्रम और श्रृंखला श्रेणी:निश्चित अंक (गणित) श्रेणी:कार्य और मानचित्रण श्रेणी:प्रकार्यात्मकसमीकरण