अल्फा कण स्पेक्ट्रोस्कोपी

From alpha
Jump to navigation Jump to search

अल्फा स्पेक्ट्रोमेट्री (जिसे अल्फा (-पार्टिकल) स्पेक्ट्रोस्कोपी भी कहा जाता है) एक रेडियोधर्मी न्यूक्लाइड द्वारा उत्सर्जित अल्फा कण की ऊर्जा का मात्रात्मक अध्ययन है जो एक अल्फा क्षय है।

जैसा कि उत्सर्जित अल्फा कण मोनो-ऊर्जावान होते हैं (अर्थात ऊर्जा के एक स्पेक्ट्रम के साथ उत्सर्जित नहीं होते हैं, जैसे कि बीटा क्षय) ऊर्जा के साथ अक्सर क्षय के लिए अलग होते हैं, उनका उपयोग यह पहचानने के लिए किया जा सकता है कि वे किस रेडियोन्यूक्लाइड से उत्पन्न हुए हैं।[1]


प्रायोगिक तरीके

Graphic showing how mono-उत्सर्जन पथ के आधार पर ऊर्जा की हानि के कारण ऊर्जा उत्सर्जन एक तेज शिखर के रूप में नहीं दिखाई देगा। लंबे पथ (स्रोत और डिटेक्टर के लंबवत नहीं होने वाली रेखाएं) उस हवा में ऊर्जा खो देंगे जिससे वे गुजरते हैं। स्रोत सामग्री के भीतर उत्पन्न होने वाले पथ अतिरिक्त रूप से स्रोत सामग्री से गुजरते हुए ऊर्जा खो देंगे। थंब

धातु डिस्क पर जमा स्रोत के साथ गिनती

धातु डिस्क पर परीक्षण समाधान की एक बूंद डालना आम बात है, जिसे बाद में डिस्क पर एक समान कोटिंग देने के लिए सुखाया जाता है। यह तब परीक्षण नमूने के रूप में उपयोग किया जाता है। यदि डिस्क पर बनने वाली परत की मोटाई बहुत मोटी है तो स्पेक्ट्रम की रेखाएं निम्न ऊर्जाओं तक चौड़ी हो जाती हैं। ऐसा इसलिए है क्योंकि सक्रिय सामग्री की परत के माध्यम से अल्फा कणों की कुछ ऊर्जा उनके आंदोलन के समय खो जाती है।[2]


तरल जगमगाहट

एक वैकल्पिक विधि तरल जगमगाहट गिनती (एलएससी) का उपयोग करना है, जहां नमूना सीधे एक जगमगाहट कॉकटेल के साथ मिलाया जाता है। जब अलग-अलग प्रकाश उत्सर्जन की घटनाओं की गणना की जाती है, तो एलएससी उपकरण प्रति रेडियोधर्मी क्षय घटना में प्रकाश ऊर्जा की मात्रा को रिकॉर्ड करता है। एलएससी पद्धति की दो मुख्य आंतरिक सीमाओं के कारण तरल सिंटिलेशन काउंटिंग द्वारा प्राप्त अल्फा स्पेक्ट्रा व्यापक हैं: (1) क्योंकि यादृच्छिक शमन प्रति रेडियोधर्मी क्षय उत्सर्जित फोटोन की संख्या को कम करता है, और (2) क्योंकि उत्सर्जित फोटॉनों को अवशोषित किया जा सकता है। बादल या रंगीन नमूनों द्वारा (लैम्बर्ट-बीयर कानून)। जब एक डिस्क पर जमा सक्रिय सामग्री की परत बहुत मोटी होती है, तो नमूना द्वारा अल्फा-कणों के अवशोषण के कारण होने वाली विकृति के अतिरिक्त तरल सिंटिलेशन स्पेक्ट्रा गाऊसी विस्तार के अधीन होते हैं।

अल्फा स्पेक्ट्रा

चार समस्थानिकों के लिए अल्फा ऊर्जा के विरुद्ध तीव्रता (भौतिकी), ध्यान दें कि रेखा की चौड़ाई संकीर्ण है और बारीक विवरण देखा जा सकता है
चार समस्थानिकों के लिए अल्फा ऊर्जा के खिलाफ तीव्रता, ध्यान दें कि लाइन की चौड़ाई चौड़ी है और कुछ बारीक विवरण नहीं देखे जा सकते। यह तरल जगमगाहट की गिनती के लिए है, जहां यादृच्छिक प्रभाव प्रति अल्फा क्षय उत्पन्न दृश्य फोटॉनों की संख्या में भिन्नता का कारण बनता है

बाएं से दाएं शिखर 209 पीओ, 239पु, 210पो और 241एम के कारण हैं। तथ्य यह है कि 239पु और 241एम जैसे समस्थानिकों में एक से अधिक अल्फा रेखाएँ हैं, यह दर्शाता है कि (बेटी) परमाणु नाभिक विभिन्न असतत ऊर्जा स्तरों में हो सकता है।

अंशांकन:

एमसीए ऊर्जा पर काम नहीं करता, यह वोल्टेज पर काम करता है। ऊर्जा को वोल्टेज से संबंधित करने के लिए पहचान प्रणाली को कैलिब्रेट करना चाहिए। यहां ज्ञात ऊर्जा के विभिन्न अल्फा उत्सर्जक स्रोतों को डिटेक्टर के नीचे रखा गया और पूर्ण ऊर्जा शिखर दर्ज किया गया।

पतली पन्नी की मोटाई का मापन:

पतली फिल्मों से गुजरने से पहले और बाद में रेडियोधर्मी स्रोतों से अल्फा कणों की ऊर्जा को मापा जाता है। अंतर को मापकर और एसआरआईएम का उपयोग करके हम पतली पन्नी की मोटाई को माप सकते हैं।

अल्फा क्षय की कीनेमेटीक्स

क्षय ऊर्जा, क्यू (प्रतिक्रिया का क्यू-मान भी कहा जाता है), द्रव्यमान के लुप्त होने से मेल खाती है।

अल्फा क्षय परमाणु प्रतिक्रिया के लिए: , (जहाँ P मूल न्यूक्लाइड है और डी पुत्री है)।

, या अधिक सामान्य रूप से उपयोग की जाने वाली इकाइयों में डालने के लिए: क्यू (एम ईइलेक्ट्रॉनवोल्ट) = -931.5 ΔM (डाल्टन (इकाई)), (यहाँ ΔM = ΣMउत्पादों - ΣMअभिकारक).[3] जब बेटी न्यूक्लाइड और अल्फा कण अपने जमीनी राज्यों (अल्फा क्षय के लिए सामान्य) में होते हैं, तो कुल क्षय ऊर्जा दोनों के बीच गतिज ऊर्जा (टी) में विभाजित होती है:

टी का आकार उत्पादों के द्रव्यमान के अनुपात पर निर्भर है और गति के संरक्षण के कारण (माता-पिता की गति = क्षय के समय 0) इसकी गणना की जा सकती है:

और ,

अल्फा कण, या 4नाभिक, एक विशेष रूप से दृढ़ता से बंधा हुआ कण है। यह इस तथ्य के साथ संयुक्त है कि प्रति न्यूक्लिऑन की बाध्यकारी ऊर्जा का अधिकतम मान A = 56 के पास है और भारी नाभिकों के लिए व्यवस्थित रूप से घटता है, यह स्थिति बनाता है कि A>150 वाले नाभिक में धनात्मक Q होता हैα-अल्फा कणों के उत्सर्जन के लिए मान।

उदाहरण के लिए, प्राकृतिक रूप से पाए जाने वाले सबसे भारी समस्थानिकों में से एक, (शुल्कों की अनदेखी):

क्यूα = -931.5 (234.043 601 + 4.002 603 254 13 - 238.050 788 2) = 4.2699 MeV[4]

ध्यान दें कि क्षय ऊर्जा को अल्फा-कण और भारी रेकॉइलिंग बेटी के बीच विभाजित किया जाएगा ताकि अल्फा कण (T) की गतिज ऊर्जाα) थोड़ा कम होगा:

टीα = (234.043 601 / 238.050 788 2) 4.2699 = 4.198 MeV, (ध्यान दें कि यह इसके लिए है 238gU से 238gTh प्रतिक्रिया, जिसमें इस मामले में 79% का ब्रांचिंग अंश है)। पुनरावृत्ति की गतिज ऊर्जा 234थ संतति केंद्रक T हैD = (एमα / एमP) क्यूα = (4.002 603 254 13 / 238.050 788 2) 4.2699 = 0.0718 MeV या 71.8 keV, जो बहुत छोटा होते हुए भी रासायनिक बंधों की तुलना में अधिक बड़ा है (<10 eV) जिसका अर्थ है कि बेटी न्यूक्लाइड किसी भी रासायनिक वातावरण से अलग हो जाएगी।

अल्फा कण ऊर्जा का पता लगाने का उदाहरण बढ़ते वायु दबाव (दाएं से बाएं) के साथ घटता है।

रिकोइल ऊर्जा भी कारण है कि अल्फा स्पेक्ट्रोमीटर, कम दबाव में चलने के समय, बहुत कम दबाव पर संचालित नहीं होते हैं ताकि हवा पीछे हटने वाली बेटी को मूल अल्फा-स्रोत से पूरी तरह से बाहर निकलने से रोकने में मदद करे और गंभीर संदूषण की समस्या पैदा करे। बेटियां खुद रेडियोधर्मी हैं।[5]

Qα- मान सामान्यतः बढ़ती परमाणु संख्या के साथ बढ़ते हैं लेकिन शेल प्रभाव के कारण द्रव्यमान की सतह में भिन्नता व्यवस्थित वृद्धि को प्रभावित कर सकती है। ए = 214 के पास की तेज चोटियाँ एन = 126 खोल के प्रभाव के कारण हैं।

संदर्भ

  1. Siegel, Peter (29 March 2021). "Nuclear decays" (PDF). Physics Department at Cal Poly Pomona. Archived (PDF) from the original on 2018-04-13.
  2. Vajda, Nora; Martin, Paul; Kim, Chang-Kyu (2012), "Alpha Spectrometry", Handbook of Radioactivity Analysis, Elsevier, pp. 380–381, doi:10.1016/b978-0-12-384873-4.00006-2, ISBN 978-0-12-384873-4, retrieved 2021-03-29
  3. Choppin, Gregory R. (2002). Radiochemistry and nuclear chemistry. Gregory R. Choppin, Jan-Olov Liljenzin, Jan Rydberg (3rd ed.). Woburn, MA: Butterworth-Heinemann. p. 62. ISBN 978-0-08-051566-3. OCLC 182729523.
  4. "Livechart – Table of Nuclides – Nuclear structure and decay data". nds.iaea.org. Retrieved 2021-03-31.
  5. Sill, Claude W.; Olson, Dale G. (1970-11-01). "Sources and prevention of recoil contamination of solid-state alpha detectors". Analytical Chemistry. 42 (13): 1596–1607. doi:10.1021/ac60295a016. ISSN 0003-2700.