कण फिल्टर

From alpha
Jump to navigation Jump to search


कण फिल्टर, या अनुक्रमिक मोंटे कार्लो विधियां, मोंटे कार्लो विधि एल्गोरिदम का समुच्चय है जिसका उपयोग सिग्नल प्रोसेसिंग और बायेसियन अनुमान जैसे गैर-रेखीय स्टेट -स्पेस प्रणालियों के लिए फ़िल्टरिंग समस्या (स्टोकेस्टिक प्रक्रियाओं) के लिए अनुमानित समाधान खोजने के लिए किया जाता है।[1] फ़िल्टरिंग समस्या (स्टोकेस्टिक प्रक्रियाएं) में गतिशील प्रणालियों में आंतरिक स्थितियों का अनुमान लगाना सम्मिलित है जब आंशिक अवलोकन किए जाते हैं और सेंसर के साथ-साथ गतिशील प्रणाली में यादृच्छिक त्रुटि उपस्तिथ होती है। इसका उद्देश्य ध्वनि और आंशिक टिप्पणियों को देखते हुए, मार्कोव प्रक्रिया की स्थिति की पूर्व संभावना का गणना करना है। कण फिल्टर शब्द प्रथम बार 1996 में पियरे डेल मोरल द्वारा माध्य-क्षेत्र कण विधियों के बारे में गढ़ा गया था। 1960 के दशक के प्रारम्भ से द्रव यांत्रिकी में उपयोग किए जाने वाले माध्य-क्षेत्र अंतःक्रियात्मक कण विधियों के बारे में हैं।[2] अनुक्रमिक मोंटे कार्लो शब्द 1998 में जून एस. लियू और रोंग चेन द्वारा गढ़ा गया था। [3]

कण फ़िल्टरिंग ध्वनि और/या आंशिक अवलोकनों को देखते हुए स्टोकेस्टिक प्रक्रिया के पीछे के वितरण का प्रतिनिधित्व करने के लिए कणों के समुच्चय (जिसे प्रतिरूप भी कहा जाता है) का उपयोग करता है। स्टेट -स्पेस मॉडल अरेखीय हो सकता है और प्रारंभिक स्थिति और ध्वनि वितरण आवश्यक कोई भी रूप ले सकता है। कण फ़िल्टर तकनीकें सुस्थापित पद्धति प्रदान करती हैं [2][4][5] इसमें स्टेट -स्पेस मॉडल या स्टेट वितरण के बारे में धारणाओं की आवश्यकता के बिना आवश्यक वितरण से प्रतिरूप उत्पन्न करने के लिए होता हैं। चूँकि, बहुत उच्च-आयामी प्रणालियों पर प्रयुक्त होने पर यह विधियाँ अच्छा प्रदर्शन नहीं करती हैं।

कण फ़िल्टर अपनी पूर्वानुमान को अनुमानित (सांख्यिकीय) विधियाँ से अपडेट करते हैं। वितरण से प्रतिरूप कणों के समुच्चय द्वारा दर्शाए जाते हैं | प्रत्येक कण को ​​ संभाव्यता भार सौंपा गया है जो संभाव्यता घनत्व फलन से उस कण के प्रतिरूप लिए जाने की संभावना को दर्शाता है। भार में असमानता के कारण भार कम होना इन फ़िल्टरिंग एल्गोरिदम में आने वाली सामान्य समस्या है। चूँकि भार के असमान होने से पहले पुनः प्रतिरूपिकरण चरण को सम्मिलित करके इसे कम किया जा सकता है। भार के विचरण और समान वितरण से संबंधित सापेक्ष एन्ट्रापी सहित अनेक अनुकूली पुन: प्रतिरूपिकरण मानदंडों का उपयोग किया जा सकता है।[6] पुन: प्रतिरूपिकरण चरण में, नगण्य भार वाले कणों को उच्च भार वाले कणों की निकटता में नए कणों द्वारा प्रतिस्थापित किया जाता है।

सांख्यिकीय और संभाव्य दृष्टिकोण से, कण फिल्टर की व्याख्या माध्य-क्षेत्र कण विधियों के रूप में की जा सकती है| फेनमैन-केएसी सूत्र की माध्य-क्षेत्र कण व्याख्या फेनमैन-केएसी संभाव्यता उपाय हैं। [7][8][9][10][11] इन कण एकीकरण तकनीकों को आणविक रसायन विज्ञान और कम्प्यूटेशनल भौतिकी में टेड हैरिस (गणितज्ञ) हैं थियोडोर ई. हैरिस और हरमन कहन द्वारा 1951 में, मार्शल रोसेनब्लुथ या मार्शल एन. रोसेनब्लुथ और एरियाना डब्ल्यू. रोसेनब्लुथ द्वारा 1955 में विकसित किया गया था।[12] और वर्तमान में 1984 में जैक एच. हेदरिंगटन द्वारा। [13] कम्प्यूटेशनल भौतिकी में, इन फेनमैन-केएसी प्रकार पथ कण एकीकरण विधियों का उपयोग क्वांटम मोंटे कार्लो और विशेष रूप से प्रसार मोंटे कार्लो में भी किया जाता है।[14][15][16] फेनमैन-केएसी इंटरैक्टिंग कण विधियां जेनेटिक एल्गोरिद्म से भी दृढ़ता से संबंधित हैं। सम्मिश्र अनुकूलन समस्याओं को समाधान करने के लिए वर्तमान में विकासवादी गणना में उत्परिवर्तन-चयन आनुवंशिक एल्गोरिदम का उपयोग किया जाता है।

कण फ़िल्टर पद्धति का उपयोग छिपा हुआ मार्कोव मॉडल (एचएमएम) और अरेखीय फ़िल्टर समस्याओं को समाधान करने के लिए किया जाता है। रैखिक-गॉसियन सिग्नल-अवलोकन मॉडल (कलमन फ़िल्टर) या मॉडल के व्यापक वर्गों (बेन्स फ़िल्टर) के उल्लेखनीय अपवाद के साथ[17], मिरेइल चालेयाट-मौरेल और डोमिनिक मिशेल ने 1984 में प्रमाणित किया कि अवलोकनों (ए.के.ए. अधिकतम फ़िल्टर) को देखते हुए, सिग्नल के यादृच्छिक स्टेट के पीछे के वितरण के अनुक्रम में कोई सीमित पुनरावृत्ति नहीं होती है। [18] निश्चित ग्रिड सन्निकटन, मार्कोव श्रृंखला मोंटे कार्लो तकनीक, पारंपरिक रैखिककरण, विस्तारित कलमन फिल्टर, या सर्वोत्तम रैखिक प्रणाली का निर्धारण (अपेक्षित निवेश -त्रुटि अर्थ में) के आधार पर अनेक अन्य संख्यात्मक विधियां बड़े मापदंड पर प्रणाली , अस्थिर प्रक्रियाओं, या अपर्याप्त रूप से स्मूथ गैर-रैखिकताओं से निपटने में असमर्थ हैं।

कण फिल्टर और फेनमैन-केएसी कण पद्धतियों का उपयोग सिग्नल प्रोसेसिंग, बायेसियन अनुमान, यंत्र अधिगम , दुर्लभ घटना प्रतिरूपिकरण , अभियांत्रिकी रोबोटिक आर्टिफीसियल इंटेलिजेंस , जैव सूचना विज्ञान, में किया जाता है। [19] फाइलोजेनेटिक्स, कम्प्यूटेशनल विज्ञान, अर्थशास्त्र वित्तीय गणित गणितीय वित्त, आणविक रसायन विज्ञान, कम्प्यूटेशनल भौतिकी, फार्माकोकाइनेटिक्स, और अन्य क्षेत्र में होते हैं।

इतिहास

अनुमानी-जैसे एल्गोरिदम

सांख्यिकीय और संभाव्य दृष्टिकोण से, कण फिल्टर शाखा प्रक्रिया/आनुवंशिक एल्गोरिदम और माध्य-क्षेत्र कण विधियों में होते हैं | यह माध्य-क्षेत्र प्रकार अंतःक्रियात्मक कण पद्धतियों के वर्ग से संबंधित हैं। इन कण विधियों की व्याख्या वैज्ञानिक अनुशासन पर निर्भर करती है। विकासवादी गणना में, माध्य-क्षेत्र कण विधियाँ होती हैं | माध्य-क्षेत्र आनुवंशिक प्रकार कण पद्धतियों का उपयोग अधिकांशतः अनुमानी और प्राकृतिक खोज एल्गोरिदम (ए.के.ए. मेटाह्यूरिस्टिक) के रूप में किया जाता है। कम्प्यूटेशनल भौतिकी और आणविक रसायन विज्ञान में, उनका उपयोग फेनमैन-केएसी पथ एकीकरण समस्याओं को समाधान करने या बोल्ट्जमैन-गिब्स उपायों, शीर्ष आइगेनवैल्यू और श्रोडिंगर समीकरण या श्रोडिंगर ऑपरेटरों की भूमि स्थिति की गणना करने के लिए किया जाता है। जीव विज्ञान और आनुवंशिकी में, वह किसी वातावरण में व्यक्तियों या जीनों की जनसंख्या के विकास का प्रतिनिधित्व करते हैं।

माध्य-क्षेत्र प्रकार के विकासवादी एल्गोरिदम की उत्पत्ति का पता एलन ट्यूरिंग के साथ 1950 और 1954 में लगाया जा सकता है| जेनेटिक प्रकार के उत्परिवर्तन-चयन सीखने की मशीनों पर एलन ट्यूरिंग का कार्य [20] और प्रिंसटन, न्यू जर्सी में उन्नत अध्ययन संस्पेस में निल्स ऑल बरीज़ के लेख हैं। [21][22] सांख्यिकी में कण फिल्टर का पहला निशान 1950 के दशक के मध्य का है 'पुअर मैन्स मोंटे कार्लो',[23] यह हैमरस्ले और अन्य द्वारा 1954 में प्रस्तावित किया गया था, जिसमें आज उपयोग की जाने वाली आनुवंशिक प्रकार के कण फ़िल्टरिंग विधियों के संकेत सम्मिलित थे। 1963 में, निल्स आल बैरिकेली ने व्यक्तियों की साधारण गेम खेलने की क्षमता की नकल करने के लिए आनुवंशिक प्रकार के एल्गोरिदम का अनुकरण किया था ।[24] विकासवादी संगणना साहित्य में, आनुवंशिक-प्रकार के उत्परिवर्तन-चयन एल्गोरिदम 1970 के दशक की प्रारम्भ में जॉन हॉलैंड के मौलिक कार्य, विशेष रूप से 1975 में प्रकाशित उनकी पुस्तक के माध्यम से लोकप्रिय हो गए थे। [25] .

जीवविज्ञान और आनुवंशिकी में, ऑस्ट्रेलियाई आनुवंशिकीविद् एलेक्स फ्रेज़र (वैज्ञानिक) ने भी 1957 में जीवों के आर्टिफीसियल चयन के आनुवंशिक प्रकार के अनुकरण पर पत्रों की श्रृंखला प्रकाशित की थी।[26] जीवविज्ञानियों द्वारा विकास का कंप्यूटर सिमुलेशन 1960 के दशक की प्रारम्भ में अधिक सामान्य हो गया, और विधियों का वर्णन फ्रेज़र और बर्नेल (1970) की पुस्तकों में किया गया।[27] और क्रॉस्बी (1973)।[28] फ़्रेज़र के सिमुलेशन में आधुनिक उत्परिवर्तन-चयन आनुवंशिक कण एल्गोरिदम के सभी आवश्यक तत्व सम्मिलित थे।

गणितीय दृष्टिकोण से, कुछ आंशिक और ध्वनि अवलोकनों को देखते हुए सिग्नल के यादृच्छिक स्टेट का नियमित वितरण संभावित संभावित कार्यों के अनुक्रम द्वारा भारित सिग्नल के यादृच्छिक प्रक्षेपवक्र पर फेनमैन-केएसी संभावना द्वारा वर्णित किया गया है।[7][8] क्वांटम मोंटे कार्लो, और अधिक विशेष रूप से डिफ्यूजन मोंटे कार्लो की व्याख्या फेनमैन-केएसी पथ इंटीग्रल्स के माध्य-क्षेत्र आनुवंशिक प्रकार के कण सन्निकटन के रूप में भी की जा सकती है। [7][8][9][13][14][29][30] क्वांटम मोंटे कार्लो विधियों की उत्पत्ति का श्रेय अधिकांशतः एनरिको फर्मी और रॉबर्ट रिचटमेयर को दिया जाता है, जिन्होंने 1948 में न्यूट्रॉन-श्रृंखला प्रतिक्रियाओं की माध्य-क्षेत्र कण व्याख्या विकसित की थी,[31] किन्तु क्वांटम प्रणाली (कम आव्युह मॉडल में) की भूमि स्थिति ऊर्जा का आकलन करने के लिए पहला अनुमानी-जैसा और आनुवंशिक प्रकार का कण एल्गोरिदम (ए.के.ए. रेज़ैम्पल्ड या रीकॉन्फिगरेशन मोंटे कार्लो विधियां) 1984 में जैक एच. हेथरिंगटन के कारण है। [13] कण भौतिकी में 1951 में प्रकाशित टेड हैरिस (गणितज्ञ)|थियोडोर ई. हैरिस और हरमन काह्न के पहले मौलिक कार्यों को भी उद्धृत किया जा सकता है, जिसमें कण संचरण ऊर्जा का अनुमान लगाने के लिए माध्य-क्षेत्र किन्तु अनुमानी-जैसी आनुवंशिक विधियों का उपयोग किया गया था। [32] आणविक रसायन विज्ञान में, आनुवंशिक अनुमान-जैसी कण पद्धतियों (उर्फ प्रूनिंग और संवर्धन रणनीतियों) का उपयोग मार्शल के मौलिक कार्य के साथ 1955 में खोजा जा सकता है। एन. रोसेनब्लुथ और एरियाना डब्ल्यू रोसेनब्लुथ हैं। [12]

उन्नत सिग्नल प्रोसेसिंग और बायेसियन अनुमान में जेनेटिक एल्गोरिदम का उपयोग वर्तमान में हुआ है। जनवरी 1993 में, जेनशिरो कितागावा ने मोंटे कार्लो फ़िल्टर विकसित किया हैं, [33] इस लेख का कुछ संशोधित संस्करण 1996 में सामने आया हैं। [34] अप्रैल 1993 में, गॉर्डन एट अल ने अपना मौलिक कार्य प्रकाशित किया हैं | [35] बायेसियन सांख्यिकीय अनुमान में आनुवंशिक प्रकार एल्गोरिदम का अनुप्रयोग हैं। लेखकों ने अपने एल्गोरिदम को 'बूटस्ट्रैप फ़िल्टर' नाम दिया, और यह प्रदर्शित किया कि अन्य फ़िल्टरिंग विधियों की तुलना में, उनके बूटस्ट्रैप एल्गोरिदम को उस स्थिति स्पेस या प्रणाली के ध्वनि के बारे में किसी भी धारणा की आवश्यकता नहीं है। स्वतंत्र रूप से, पियरे डेल मोरल द्वारा [2] और हिमिल्कोन कार्वाल्हो, पियरे डेल मोरल, आंद्रे मोनिन और जेरार्ड सैलुट[36] 1990 के दशक के मध्य में प्रकाशित कण फिल्टर पर होते हैं। 1989-1992 की प्रारम्भ में पी. डेल मोरल, जे.सी. नोयर, जी. रिगल और जी. सालुट द्वारा एलएएएस-सीएनआरएस में सिग्नल प्रोसेसिंग में एसटीसीएएन (सर्विस टेक्नीक डेस कंस्ट्रक्शन्स एट आर्म्स नेवेल्स), आईटी कंपनी डिजीलॉग, और एलएएएस-सीएनआरएस (विश्लेषण के लिए प्रयोगशाला) के साथ प्रतिबंधित और वर्गीकृत अनुसंधान रिपोर्टों की श्रृंखला में कण फिल्टर भी विकसित किए गए थे। रडार/सोनार और जीपीएस सिग्नल प्रोसेसिंग समस्याओं पर प्रणाली का आर्किटेक्चर) होता हैं।[37][38][39][40][41][42]


गणितीय आधार

1950 से 1996 तक, कण फिल्टर और आनुवंशिक एल्गोरिदम पर सभी प्रकाशन, जिसमें कम्प्यूटेशनल भौतिकी और आणविक रसायन विज्ञान में प्रारंभ की गई मोंटे कार्लो विधियों की छंटाई और पुन: प्रतिरूप सम्मिलित है, उनकी स्थिरता के भी प्रमाण के बिना विभिन्न स्थितियों पर प्रयुक्त प्राकृतिक और अनुमानी-जैसे एल्गोरिदम प्रस्तुत करते हैं, न ही अनुमानों और रेखा और एन्सेस्ट्रल ट्री -आधारित एल्गोरिदम के पूर्वाग्रह पर कोई चर्चा करते हैं।

गणितीय नींव और इन कण एल्गोरिदम का पहला कठोर विश्लेषण पियरे डेल मोरल के कारण है[2][4] 1996 में. लेख [2] इसमें संभाव्यता कार्यों के कण सन्निकटन और असामान्य नियमित संभाव्यता उपायों के निष्पक्ष गुणों का प्रमाण भी सम्मिलित है। इस लेख में प्रस्तुत संभावना कार्यों के निष्पक्ष कण अनुमानक का उपयोग आज बायेसियन सांख्यिकीय अनुमान में किया जाता है।

डैन क्रिसन, जेसिका गेन्स, और टेरी लियोन्स,[43][44][45] साथ ही डैन क्रिसन, पियरे डेल मोरल, और टेरी लियोन्स हैं,[46] 1990 के दशक के अंत में विभिन्न जनसंख्या आकारों के साथ शाखा-प्रकार की कण तकनीकें बनाई गईं हैं। पी. डेल मोरल, ए. गियोनेट, और एल. मिक्लो[8][47][48] 2000 में इस विषय में और अधिक प्रगति हुई। पियरे डेल मोरल और ऐलिस गियोनेट[49] 1999 में पियरे डेल मोरल और लॉरेंट मिक्लो ने पहली केंद्रीय सीमा प्रमेय प्रमाणित की[8] उन्हें 2000 में प्रमाणित किया गया। कण फिल्टर के लिए समय पैरामीटर से संबंधित पहला समान अभिसरण परिणाम 1990 के दशक के अंत में पियरे डेल मोरल और ऐलिस गियोनेट द्वारा विकसित किया गया था।[47][48] रेखा ट्री आधारित कण फिल्टर स्मूथ का पहला कठोर विश्लेषण 2001 में पी. डेल मोरल और एल. मिक्लो के कारण हुआ हैं। [50]

फेनमैन-केएसी कण पद्धतियों और संबंधित कण फ़िल्टर एल्गोरिदम पर सिद्धांत 2000 और 2004 में पुस्तकों में विकसित किया गया था। [8][5] यह अमूर्त संभाव्य मॉडल आनुवंशिक प्रकार के एल्गोरिदम, कण और बूटस्ट्रैप फिल्टर को समाहित करते हैं, कलमैन फिल्टर (उर्फ राव-ब्लैकवेलाइज्ड कण फिल्टर) को इंटरैक्ट करते हैं [51]), महत्वपूर्ण प्रतिरूपिकरण और पुन: प्रतिरूपिकरण शैली कण फ़िल्टर तकनीक हैं, जिसमें फ़िल्टरिंग और स्मूथिंग समस्याओं को समाधान करने के लिए रेखा ट्री -आधारित और कण पिछड़े विधियाँ सम्मिलित हैं। कण फ़िल्टरिंग पद्धतियों के अन्य वर्गों में रेखा ट्री -आधारित मॉडल सम्मिलित हैं,[10][5][52] पिछड़े मार्कोव कण मॉडल,[10][53] अनुकूली माध्य-क्षेत्र कण मॉडल,[6] द्वीप-प्रकार के कण मॉडल,[54][55] और कण मार्कोव श्रृंखला मोंटे कार्लो पद्धतियाँ हैं। [56][57]


फ़िल्टरिंग समस्या

उद्देश्य

कण फ़िल्टर का लक्ष्य अवलोकन वेरिएबल दिए गए स्टेट वेरिएबल के पीछे के घनत्व का अनुमान लगाना है। कण फ़िल्टर छिपे हुए मार्कोव मॉडल के साथ उपयोग के लिए है, जिसमें प्रणाली में छिपे हुए और देखने योग्य दोनों वेरिएबल सम्मिलित हैं। अवलोकन योग्य वेरिएबल (अवलोकन प्रक्रिया) ज्ञात कार्यात्मक रूप के माध्यम से छिपे हुए वेरिएबल (स्टेट -प्रक्रिया) से जुड़े हुए हैं। इसी प्रकार, स्टेट वेरिएबल के विकास को परिभाषित करने वाली गतिशील प्रणाली का संभाव्य विवरण ज्ञात है।

सामान्य कण फ़िल्टर अवलोकन माप प्रक्रिया का उपयोग करके छिपी हुई अवस्थाओं के पीछे के वितरण का अनुमान लगाता है। स्टेट -स्पेस के संबंध में जैसे कि नीचे दिया गया है:

फ़िल्टरिंग समस्या किसी भी समय चरण k अवलोकन प्रक्रिया के मूल्यों को देखते हुए छुपे हुए अवस्थाओं के मूल्यों का क्रमिक रूप से अनुमान लगाना है ,

के सभी बायेसियन अनुमान पश्च संभाव्यता से अनुसरण करते है . कण फ़िल्टर पद्धति आनुवंशिक प्रकार के कण एल्गोरिदम से जुड़े अनुभभार माप का उपयोग करके इन नियमित संभावनाओं का अनुमान प्रदान करती है। इसके विपरीत, मार्कोव चेन मोंटे कार्लो या महत्व प्रतिरूपिकरण दृष्टिकोण पूर्ण पश्च भाग का मॉडल तैयार करता है | .

सिग्नल-अवलोकन मॉडल

कण विधियाँ प्रायः मान ली जाती हैं और अवलोकन को इस रूप में प्रतिरूपित किया जा सकता है |

  • मार्कोव प्रक्रिया क्रियान्वित है (कुछ के लिए ) जो संक्रमण संभाव्यता घनत्व के अनुसार विकसित होता है | इस मॉडल को अधिकांशतः सिंथेटिक विधियाँ से भी लिखा जाता है |
प्रारंभिक संभाव्यता घनत्व के साथ .
  • अवलोकन (कुछ के लिए ) कुछ स्टेट स्पेस में मान लेतें है. और नियमित रूप से स्वतंत्र हैं परंतु कि ज्ञात हैं। दूसरे शब्दों में, प्रत्येक केवल पर ही निर्भर करता है .इसके अतिरिक्त , हम मानते हैं कि के लिए नियमित वितरण दिया गया है तथा बिल्कुल निरंतर हैं, और हमारे समीप सिंथेटिक विधियों से हैं


इन गुणों वाले प्रणाली का उदाहरण है |

जहाँ और दोनों ज्ञात संभाव्यता घनत्व फलन के साथ परस्पर स्वतंत्र अनुक्रम हैं | इसमें g और h ज्ञात फलन हैं। इन दो समीकरणों को स्टेट स्पेस (नियंत्रण) समीकरणों के रूप में देखा जा सकता है और कलमन फ़िल्टर के लिए स्टेट स्पेस समीकरणों के समान दिख सकते हैं। यदि उपरोक्त उदाहरण में फलन g और h रैखिक हैं, और यदि और दोनों गाऊसी हैं, तब कलमन फ़िल्टर स्पष्ट बायेसियन फ़िल्टरिंग वितरण पाता है। यदि नहीं, तो कलमैन फ़िल्टर-आधारित विधियाँ प्रथम-क्रम सन्निकटन (विस्तारित कलमान फ़िल्टर) या दूसरे-क्रम सन्निकटन (सामान्यतः अनसेंटेड कलमैन फ़िल्टर, किन्तु यदि संभाव्यता वितरण गॉसियन है तो तीसरे-क्रम सन्निकटन संभव है)।

इस धारणा को शिथिल किया जा सकता है कि प्रारंभिक वितरण और मार्कोव श्रृंखला के संक्रमण लेब्सेग माप के लिए निरंतर हैं। कण फिल्टर को डिजाइन करने के लिए हमें बस यह मानने की आवश्यकता है कि हम मार्कोव श्रृंखला के संक्रमणों का प्रतिरूप ले सकते हैं और संभाव्यता फलन की गणना करने के लिए (उदाहरण के लिए नीचे दिए गए कण फिल्टर का आनुवंशिक चयन उत्परिवर्तन विवरण देखें)। यह मार्कोव संक्रमणों पर निरंतर धारणा इसका उपयोग केवल अनौपचारिक (और किंतु अपमानजनक) विधियाँ से नियमित घनत्वों के लिए बेयस नियम का उपयोग करके पश्च वितरण के मध्य विभिन्न सूत्रों को प्राप्त करने के लिए किया जाता है।

अनुमानित बायेसियन गणना मॉडल

कुछ समस्याओं में, सिग्नल की यादृच्छिक स्थिति को देखते हुए अवलोकनों का नियमित वितरण, घनत्व में विफल हो सकता है | उत्तरार्द्ध की गणना करना असंभव या बहुत सम्मिश्र हो सकता है। [19] इस स्थिति में, सन्निकटन का अतिरिक्त स्तर आवश्यक है। और रणनीति सिग्नल को परिवर्तन करने की है मार्कोव श्रृंखला द्वारा और प्रपत्र का आभासी अवलोकन प्रस्तुत करना आवश्यकता होती है

स्वतंत्र यादृच्छिक वेरिएबल के कुछ अनुक्रम के लिए ज्ञात संभाव्यता घनत्व कार्यों के साथ हैं। केंद्रीय विचार उसका निरीक्षण करना है

आंशिक अवलोकनों को देखते हुए मार्कोव प्रक्रिया से जुड़े कण फिल्टर को द्वारा कुछ स्पष्ट अप्रिय नोटेशन के साथ दिए गए संभावना फलन के साथ में विकसित होने वाले कणों के संदर्भ में परिभाषित किया गया है। यह संभाव्य तकनीकें अनुमानित बायेसियन संगणना (एबीसी) से निकटता से संबंधित हैं। कण फिल्टर के संदर्भ में, इन एबीसी कण फ़िल्टरिंग तकनीकों को 1998 में पी. डेल मोरल, जे. जैकॉड और पी. प्रॉटर द्वारा प्रस्तुत किया गया था। [58] इन्हें आगे पी. डेल मोरल, ए. डौसमुच्चय और ए. जसरा द्वारा विकसित किया गया। [59]

अरेखीय फ़िल्टरिंग समीकरण

बेयस नियम नियमित संभाव्यता के लिए बेयस नियम देता है

जहाँ

कण फिल्टर भी अनुमान है, किन्तु पर्याप्त कणों के साथ वह अधिक स्पष्ट हो सकते हैं। [2][4][5][47][48] अरेखीय फ़िल्टरिंग समीकरण प्रत्यावर्तन द्वारा दिया गया है

 

 

 

 

(Eq. 1)

यह k = 0 के लिए सम्मेलन के साथ होता हैं। नॉनलाइनियर फ़िल्टरिंग समस्या में इन नियमित वितरणों की क्रमिक रूप से गणना करना सम्मिलित है।

फेनमैन-केएसी सूत्रीकरण

हम समय क्षितिज n और अवलोकनों का क्रम तय करते हैं , और प्रत्येक k = 0, ..., n के लिए हम समुच्चय करते हैं

इस अंकन में, प्रक्षेप पथ के समुच्चय पर किसी भी बंधे हुए फलन F के लिए मूल k = 0 से समय k = n तक, हमारे समीप फेनमैन-केएसी सूत्र है

फेनमैन-केएसी पथ एकीकरण मॉडल कम्प्यूटेशनल भौतिकी, जीव विज्ञान, सूचना सिद्धांत और कंप्यूटर विज्ञान सहित विभिन्न वैज्ञानिक विषयों में उत्पन्न होते हैं। [8][10][5] उनकी व्याख्याएँ अनुप्रयोग डोमेन पर निर्भर हैं। उदाहरण के लिए, यदि हम संकेतक फलन चुनते हैं तब स्टेट स्पेस के कुछ उपसमुच्चय में से हैं, वह मार्कोव श्रृंखला के नियमित वितरण का प्रतिनिधित्व करते हैं, यह दिए गए ट्यूब में रहता है; अर्थात्, यह हमारे समीप है

और

जैसे ही सामान्यीकरण स्थिरांक सख्ती से धनात्मक होता है।

कण फिल्टर

आनुवंशिक प्रकार का कण एल्गोरिथ्म

प्रारंभ में, ऐसा एल्गोरिदम सामान्य संभाव्यता घनत्व के साथ N स्वतंत्र यादृच्छिक वेरिएबल से प्रारंभ होता है. आनुवंशिक एल्गोरिथ्म चयन-उत्परिवर्तन संक्रमण हैं [2][4]

इस प्रकार के अधिकतम फ़िल्टर विकास (Eq. 1) के अद्यतन-पूर्वानुमान परिवर्तनों की नकल/अनुमानित करते है

  • चयन-अद्यतन संक्रमण के समय हम सामान्य (सशर्त) वितरण के साथ N (सशर्त) स्वतंत्र यादृच्छिक वेरिएबल का प्रतिरूप लेते हैं

जहाँ किसी दिए गए स्टेट में डिराक माप के लिए खड़ा है।

  • उत्परिवर्तन-पूर्वानुमान संक्रमण के समय, प्रत्येक चयनित कण से हम स्वतंत्र रूप से संक्रमण का प्रतिरूप लेते हैं |

उपरोक्त प्रदर्शित सूत्रों में का अर्थ संभावना फलन है जिसका मूल्यांकन पर किया गया है, और का अर्थ नियमित घनत्व है जिसका मूल्यांकन पर किया गया है।

प्रत्येक समय k पर, हमारे समीप कण सन्निकटन होते हैं

और

आनुवंशिक एल्गोरिदम और एवोलूशनरी कंप्यूटिंग समुदाय में, ऊपर वर्णित उत्परिवर्तन-चयन मार्कोव श्रृंखला को अधिकांशतः आनुपातिक चयन के साथ आनुवंशिक एल्गोरिदम कहा जाता है। लेखों में यादृच्छिक जनसंख्या आकार सहित अनेक शाखाओं के प्रकार भी प्रस्तावित किए गए हैं। [5][43][46]

मोंटे कार्लो विधि

कण विधियाँ, सभी प्रतिरूप-आधारित दृष्टिकोणों (जैसे, मार्कोव श्रृंखला मोंटे कार्लो) की तरह, प्रतिरूपों का समुच्चय उत्पन्न करती हैं जो फ़िल्टरिंग घनत्व का अनुमान लगाती हैं

उदाहरण के लिए, हमारे समीप अनुमानित पश्च वितरण से N प्रतिरूप हो सकते हैं , जहां प्रतिरूपों को सुपरस्क्रिप्ट के साथ इस प्रकार लेबल किया गया है

फिर, फ़िल्टरिंग वितरण के संबंध में अपेक्षाओं का अनुमान लगाया जाता है

 

 

 

 

(Eq. 2)

साथ

जहाँ किसी दिए गए स्टेट में डिराक माप फलन f के लिए खड़ा है।, मोंटे कार्लो के लिए सामान्य विधियाँ से, कुछ सन्निकटन त्रुटि तक वितरण के सभी क्षण (गणित) आदि दे सकता है। जब सन्निकटन समीकरण (Eq. 2) हमारे द्वारा लिखे गए किसी भी परिबद्ध फलन के लिए संतुष्ट है

कण फिल्टर की व्याख्या उत्परिवर्तन और चयन संक्रमण के साथ विकसित होने वाले आनुवंशिक प्रकार के कण एल्गोरिदम के रूप में की जा सकती है। हम एन्सेस्ट्रल रेखा की गणना रख सकते हैं

कणों का . यादृच्छिक अवस्थाएँ , निम्न सूचकांकों l=0,...,k, के साथ स्तर l=0,...,k. पर इंडिविजुअल के एन्सेस्ट्रल को दर्शाता है इस स्थिति में, हमारे समीप सन्निकटन सूत्र है

 

 

 

 

(Eq. 3)

अनुभभार माप के साथ

यहां f सिग्नल के पथ स्पेस पर किसी भी स्थापित फलन के लिए है। अधिक सिंथेटिक रूप में (Eq. 3) के समान है

इस प्रकार के कण फिल्टर की व्याख्या अनेक भिन्न -भिन्न विधियों से की जा सकती है। संभाव्य दृष्टिकोण से वह माध्य-क्षेत्र कण विधियों के साथ मेल खाते हैं | गैर-रेखीय फ़िल्टरिंग समीकरण की माध्य-क्षेत्र कण व्याख्या हैं। अधिकतम फ़िल्टर विकास के अद्यतन-पूर्वानुमान संक्रमणों की व्याख्या व्यक्तियों के मैलिक आनुवंशिक प्रकार के चयन-उत्परिवर्तन संक्रमणों के रूप में भी की जा सकती है। अनुक्रमिक महत्व पुन: प्रतिरूपिकरण तकनीक बूटस्ट्रैप पुन: प्रतिरूपिकरण चरण के साथ महत्व प्रतिरूप को जोड़ते हुए फ़िल्टरिंग संक्रमण की और व्याख्या प्रदान करती है। अंतिम, किन्तु महत्वपूर्ण बात यह है कि कण फिल्टर को रीसाइक्लिंग तंत्र से सुसज्जित स्वीकृति-अस्वीकृति पद्धति के रूप में देखा जा सकता है। [10][5]


माध्य-क्षेत्र कण विधियाँ

सामान्य संभाव्य सिद्धांत

गैर-रेखीय फ़िल्टरिंग विकास को रूप की संभाव्यता उपायों के समुच्चय में गतिशील प्रणाली के रूप में व्याख्या किया जा सकता है जहाँ संभाव्यता वितरण के समुच्चय से स्वयं में कुछ मैपिंग के लिए खड़ा है। उदाहरण के लिए, यह-चरणीय अधिकतम भविष्यवक्ता का विकास करने में उपयोग किये जाते है

संभाव्यता वितरण से प्रारंभ होने वाले अरेखीय विकास को संतुष्ट करता है . इन संभाव्यता मापों का अनुमान लगाने का सबसे सरल विधि में से सामान्य संभाव्यता वितरण के साथ N स्वतंत्र यादृच्छिक वेरिएबलों से प्रारंभ करना है. ऐसा है कि मान लीजिए कि हमने N यादृच्छिक वेरिएबलों का क्रम परिभाषित किया है

अगले चरण में हम N (सशर्त) स्वतंत्र यादृच्छिक वेरिएबल का प्रतिरूप लेते हैं सामान्य नियम के साथ.

फ़िल्टरिंग समीकरण की कण व्याख्या

हम कदम अधिकतम भविष्यवक्ताओं के विकास के संदर्भ में इस माध्य-क्षेत्र कण सिद्धांत का वर्णन करते हैं

 

 

 

 

(Eq. 4)

k = 0 के लिए हम कन्वेंशन का उपयोग करते हैं .

बड़ी संख्या के नियम के अनुसार, हमारे समीप है

इस अर्थ में कि

किसी भी सीमित फलन के लिए . हम आगे यह भी मानते हैं कि हमने कणों का क्रम बनाया है कुछ रैंक k पर ऐसा है

इस अर्थ में कि किसी भी बंधे हुए कार्य के लिए अपने समीप है

इस स्थिति में, अनुभभार माप द्वारा Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Expected [, ;!_#%$&], [a-zA-Z], or [{}|] but "व" found.in 1:17"): {\displaystyle \वाइडहैट{p}(dx_k|y_0,\cdots,y_{k-1}} में बताए गए -चरण अधिकतम फ़िल्टर के विकास समीकरण में (Eq. 4) हम उसे ढूंढते हैं

ध्यान दें कि उपरोक्त सूत्र में दाहिनी ओर भारित संभाव्यता मिश्रण है

जहाँ घनत्व के लिए खड़ा है जिसको पर मूल्यांकन किया गया है, और घनत्व के लिए खड़ा है पर जिसका मूल्यांकन के लिए पर किया गया है

फिर, हम N स्वतंत्र यादृच्छिक वेरिएबल का प्रतिरूप लेते हैं जिससे सामान्य संभाव्यता घनत्व के साथ हैं जिससे कि

इस प्रक्रिया को दोहराते हुए, हम मार्कोव श्रृंखला को इस प्रकार डिज़ाइन करते हैं

ध्यान दें कि बेयस के सूत्रों का उपयोग करके प्रत्येक समय चरण k पर अधिकतम फ़िल्टर का अनुमान लगाया जाता है

शब्दावली माध्य-क्षेत्र सन्निकटन इस तथ्य से आता है कि हम प्रत्येक समय कदम पर संभाव्यता माप को प्रतिस्थापित करते हैं तथा अनुभभार सन्निकटन द्वारा . फ़िल्टरिंग समस्या का माध्य-क्षेत्र कण सन्निकटन अद्वितीय होने से बहुत दूर है। पुस्तकों में अनेक रणनीतियाँ विकसित की गई हैं। [10][5]


कुछ अभिसरण परिणाम

इस प्रकार के कण फिल्टर के अभिसरण का विश्लेषण 1996 में प्रारंभ किया गया था | [2][4] और 2000 में किताब में [8] और लेखों की श्रृंखला.[46][47][48][49][50][60][61] वर्तमान के घटनाक्रम किताबों में पाए जा सकते हैं,[10][5] जब फ़िल्टरिंग समीकरण स्थिर होता है (इस अर्थ में कि यह किसी भी त्रुटि प्रारंभिक स्थिति को सही करता है), कण का पूर्वाग्रह और विचरण अनुमान लगाता है

गैर-स्पर्शोन्मुख समान अनुमानों द्वारा नियंत्रित होते हैं

1 से घिरे किसी भी फलन f के लिए, और कुछ परिमित स्थिरांकों के लिए इसके अतिरिक्त किसी के लिए भी है

कुछ परिमित स्थिरांकों के लिए कण अनुमान के स्पर्शोन्मुख पूर्वाग्रह और विचरण से संबंधित, और कुछ परिमित स्थिरांक c है। यदि हम चरण वाले अधिकतम भविष्यवक्ता को अधिकतम फ़िल्टर सन्निकटन से प्रतिस्थापित करते हैं तो वही परिणाम संतुष्ट होते हैं।

रेखा ट्री एवं निष्पक्षता गुण

रेखा ट्री आधारित कण चौरसाई

समय में एन्सेस्ट्रल रेखा का पता लगाना

व्यक्तियों का और हर समय चरण k पर, हमारे समीप कण सन्निकटन भी होते हैं

यह अनुभभार सन्निकटन कण अभिन्न सन्निकटन के समतुल्य हैं

सिग्नल के यादृच्छिक प्रक्षेपवक्र पर किसी भी बंधे हुए फलन F के लिए है। जैसा कि इसके रूप में दिखाया गया [52] रेखा ट्री का विकास सिग्नल प्रक्षेपवक्र के पीछे के घनत्व से जुड़े विकास समीकरणों की माध्य-क्षेत्र कण व्याख्या के साथ मेल खाता है। इन पथ स्पेस मॉडलों के बारे में अधिक जानकारी के लिए, हम पुस्तकों का संदर्भ लेते हैं। [10][5]


संभावना कार्यों का निष्पक्ष कण अनुमान

हम उत्पाद सूत्र का उपयोग करते हैं

साथ

और सम्मेलन और k = 0 के लिए। प्रतिस्थापित करना अनुभभार माप सन्निकटन द्वारा उपयोग किया जाता है

उपरोक्त प्रदर्शित सूत्र में, हम संभावना फलन के निम्नलिखित निष्पक्ष कण सन्निकटन को डिज़ाइन करते हैं

साथ

जहाँ घनत्व के लिए खड़ा है पर मूल्यांकन किया गया है . तथा इस कण अनुमान का डिज़ाइन और निष्पक्षता गुण 1996 में लेख में सिद्ध किया गया है। [2] और परिष्कृत विचरण अनुमान यहां पाए जा सकते हैं [5][10]


बैकवर्ड कण स्मूथर्स

बेयस नियम का उपयोग करते हुए, हमारे समीप सूत्र है

नोटिस जो

इसका अर्थ यह है कि

एक-चरणीय अधिकतम भविष्यवक्ताओं को प्रतिस्थापित करना कण अनुभभार उपायों द्वारा

हम उसे खोजते हैं

हम यह निष्कर्ष निकालते हैं

पिछड़े कण सन्निकटन के साथ

संभाव्यता माप

समय k=n से समय k=0 तक पीछे की ओर दौड़ना मार्कोव श्रृंखला के यादृच्छिक पथों की संभावना है, और कणों की जनसंख्या से जुड़े स्टेट स्पेस में प्रत्येक समय चरण k पर विकसित होना है

  • प्रारंभ में (समय k=n पर) श्रृंखला वितरण के साथ यादृच्छिक रूप से स्टेट चुनता है
  • समय k से समय (k-1) तक, श्रृंखला किसी अवस्था से प्रारंभ होती है समय k के लिए कुछ के लिए समय पर (k-1) पर यादृच्छिक स्थिति में चला जाता है जिसे असतत भारित संभावना के साथ चुना जाता है।

उपरोक्त प्रदर्शित सूत्र में, नियमित वितरण के लिए खड़ा है जिस पर मूल्यांकन किया गया है तब उसी भाव में,, और पर नियमित घनत्व और के लिए खड़े हो जाओ तथा और पर मूल्यांकन किया गया तब यह मॉडल घनत्व के संबंध में एकीकरण को कम करने की अनुमति देते हैं और ऊपर वर्णित श्रृंखला के मार्कोव संक्रमण के संबंध में आव्युह संचालन के संदर्भ में हैं। [53] उदाहरण के लिए, किसी भी फलन के लिए हमारे समीप कण अनुमान हैं

जहाँ

इससे यह भी पता चलता है कि यदि

तब


कुछ अभिसरण परिणाम

हम मान लेंगे कि फ़िल्टरिंग समीकरण स्थिर है, इस अर्थ में कि यह किसी भी त्रुटि प्रारंभिक स्थिति को ठीक करता है।

इस स्थिति में, संभावना कार्यों के कण सन्निकटन निष्पक्ष होते हैं और सापेक्ष विचरण को नियंत्रित किया जाता है

कुछ परिमित स्थिरांक c के लिए . इसके अतिरिक्त , किसी के लिए भी :

कुछ परिमित स्थिरांकों के लिए कण अनुमान के स्पर्शोन्मुख पूर्वाग्रह और विचरण से संबंधित, और कुछ परिमित स्थिरांक c के लिए।

'रेखा ट्री की एन्सेस्ट्रल रेखाओं के आधार पर कण कण अनुमान' का पूर्वाग्रह और भिन्नता

गैर-स्पर्शोन्मुख समान अनुमानों द्वारा नियंत्रित होते हैं

1 से घिरे किसी भी फलन F के लिए, और कुछ परिमित स्थिरांकों के लिए इसके अतिरिक्त , किसी के लिए भी :

कुछ परिमित स्थिरांकों के लिए कण अनुमान के स्पर्शोन्मुख पूर्वाग्रह और विचरण से संबंधित, और कुछ परिमित स्थिरांक c के लिए हैं। पिछड़े कण स्मूथ के लिए भी इसी प्रकार का पूर्वाग्रह और विचरण अनुमान प्रयुक्त होता है। प्रपत्र के योगात्मक कार्यों के लिए हैं

साथ

हमारे समीप कार्यों के साथ 1 से परिबद्ध, है

और

कुछ परिमित स्थिरांकों के लिए उपयोग किया जाता है तथा त्रुटियों की तेजी से कम संभावना सहित अधिक परिष्कृत अनुमान विकसित किए गए हैं। [10]


अनुक्रमिक महत्व पुन: प्रतिरूपिकरण (एसआईआर)

मोंटे कार्लो फ़िल्टर और बूटस्ट्रैप फ़िल्टर

अनुक्रमिक महत्व पुन: प्रतिरूपिकरण (सांख्यिकी) (एसआईआर), मोंटे कार्लो फ़िल्टरिंग (कितागावा 1993)[33]), बूटस्ट्रैप फ़िल्टरिंग एल्गोरिदम (गॉर्डन एट अल. 1993 [35] एकल वितरण पुनः प्रतिरूपिकरण (बेजुरी डब्ल्यू.एम.वाई.बी एट अल. 2017) हैं। [62]), सामान्यत फ़िल्टरिंग एल्गोरिदम भी प्रयुक्त होते हैं, जो फ़िल्टरिंग संभाव्यता घनत्व का अनुमान लगाते हैं यह N प्रतिरूपों के भारित समुच्चय द्वारा होता हैं

महत्व भार प्रतिरूपों की सापेक्ष पूर्व संभावनाओं (या घनत्व) के अनुमान हैं

अनुक्रमिक महत्व प्रतिरूपिकरण (एसआईएस) महत्व प्रतिरूप का अनुक्रमिक (अर्थात , पुनरावर्ती) संस्करण है। यह महत्व के प्रतिरूप के रूप में, फलन f की अपेक्षा को भारित औसत के रूप में अनुमानित किया जा सकता है

प्रतिरूपों के सीमित समुच्चय के लिए, एल्गोरिदम का प्रदर्शन प्रस्ताव वितरण की पसंद पर निर्भर है

.

अधिकतम प्रस्ताव वितरण लक्ष्य वितरण के रूप में दिया गया है

प्रस्ताव परिवर्तन का यह विशेष विकल्प 1996 और 1998 में पी. डेल मोरल द्वारा प्रस्तावित किया गया है। [4] जब वितरण के अनुसार संक्रमणों का प्रतिरूप लेना कठिन हो तथा प्राकृतिक रणनीति निम्नलिखित कण सन्निकटन का उपयोग करना है

अनुभभार सन्निकटन के साथ

N (या किसी अन्य बड़ी संख्या में नमूने) स्वतंत्र यादृच्छिक प्रतिरूपों से जुड़ा हुआ है यादृच्छिक स्थिति के नियमित वितरण के साथ दिया गया है. इस सन्निकटन और अन्य एक्सटेंशन के परिणामी कण फ़िल्टर की स्थिरता विकसित की जाती है। [4] उपरोक्त डिस्प्ले में किसी दिए गए स्टेट में डिराक माप के लिए खड़ा है।

चूँकि, संक्रमण पूर्व संभाव्यता वितरण को अधिकांशतः महत्व फलन के रूप में उपयोग किया जाता है, क्योंकि कणों (या प्रतिरूपों ) को खींचना और पश्चात के महत्व को भार गणना करना सरल होता है:

महत्व फलन के रूप में संक्रमण पूर्व संभाव्यता वितरण के साथ अनुक्रमिक महत्व पुन: प्रतिरूपिकरण (एसआईआर) फ़िल्टर को सामान्यतः पुन: प्रतिरूपिकरण (सांख्यिकी) या बूटस्ट्रैप और संक्षेपण एल्गोरिदम के रूप में जाना जाता है।

पुन: प्रतिरूपिकरण का उपयोग एल्गोरिदम की विकृति की समस्या से बचने के लिए किया जाता है, अर्थात ऐसी स्थिति से बचने के लिए कि इसको छोड़कर सभी महत्वपूर्ण भार शून्य के समीप हैं। एल्गोरिथ्म का प्रदर्शन पुन: प्रतिरूपिकरण विधि के उचित चयन से भी प्रभावित हो सकता है। कितागावा (1993) द्वारा प्रस्तावित स्तरीकृत प्रतिरूपिकरण [33] विचरण की दृष्टि से अधिकतम है।

अनुक्रमिक महत्व पुनः प्रतिरूपिकरण का चरण इस प्रकार है:

1) के लिए प्रस्ताव वितरण से प्रतिरूप निकालें
2) के लिए महत्व भार को सामान्यीकरण स्थिरांक तक अद्यतन करें:
ध्यान दें कि जब हम संक्रमण पूर्व संभाव्यता वितरण को महत्व फलन के रूप में उपयोग करते हैं,
यह निम्नलिखित को सरल बनाता है:
3) के लिए सामान्यीकृत महत्व भार की गणना करें:
4) कणों की प्रभावी संख्या के अनुमान की गणना करें
यह मानदंड वज़न के विचरण को दर्शाता है। और अन्य मानदंड लेख में भी पाए जा सकते हैं,[6] तथा जिसमें उनका कठोर विश्लेषण और केंद्रीय सीमा प्रमेय सम्मिलित हैं।
5) यदि कणों की प्रभावी संख्या दी गई सीमा से कम है, फिर पुन: प्रतिरूपिकरण करें:
a) वर्तमान कण समुच्चय से N कणों को उनके भार के अनुपातिक संभावनाओं के साथ खींचें। वर्तमान कण समुच्चय को इस नए से बदलें।
b) के लिए तय करना

सैम्पलिंग इंपोर्टेंस रिसैम्पलिंग शब्द का उपयोग कभी-कभी एसआईआर फिल्टर का संदर्भ देते समय भी किया जाता है, किन्तु इंपोर्टेंस रिसैम्पलिंग शब्द अधिक स्पष्ट है क्योंकि रिसैम्पलिंग शब्द का तात्पर्य है कि प्रारंभिक प्रतिरूपिकरण पहले ही किया जा चुका है।[63]


अनुक्रमिक महत्व प्रतिरूपिकरण (एसआईएस)

  • अनुक्रमिक महत्व पुनः प्रतिरूपिकरण के समान है, किन्तु पुनः प्रतिरूपिकरण चरण के बिना है ।

प्रत्यक्ष संस्करण एल्गोरिदम

प्रत्यक्ष संस्करण एल्गोरिथ्म काफी सरल है (अन्य कण फ़िल्टरिंग एल्गोरिदम की तुलना में) और यह संरचना और अस्वीकृति का से k से ल प्रतिरूप x उत्पन्न करने के लिए उपयोग करता है।

1) n = 0 समुच्चय करें (यह अब तक उत्पन्न कणों की संख्या की गणना करेगा)
2) समान वितरण (भिन्न -भिन्न ) श्रेणी से सूचकांक i चुनें |
3) के साथ वितरण से परीक्षण उत्पन्न करें.
4) जहाँ मापा गया मान है वहां से का उपयोग करते हुए की संभावना उत्पन्न करें
5) से और समान वितरण (निरंतर) u उत्पन्न करें जहाँ
6) u और की तुलना करें
6 a) यदि u बड़ा है तो चरण 2 से दोहराएं
6 b) यदि u छोटे हैं तो के रूप में बचाएं जैसा और वेतन n कि वृद्धि करे |
7) यदि n == N है तो छोड़ दें

इस प्रकार के लक्ष्य केवल कणों का उपयोग करके k पर P कण उत्पन्न करना है. इसके लिए आवश्यक है कि केवल पर आधारित उत्पन्न करने के लिए मार्कोव समीकरण लिखा जा सकता है. यह एल्गोरिदम k पर कण उत्पन्न करने के लिए से P कणों की संरचना का उपयोग करता है और (चरण 2-6) तब तक दोहराता है जब तक कि k पर P कण उत्पन्न न हो जाएं।

यदि x को द्वि-आयामी सरणी के रूप में देखा जाए तो इसे अधिक सरलता से देखा जा सकता है। आयाम k है और दूसरा आयाम कण संख्या है। उदाहरण के लिए, पर iवें कण होगा और इसे लिखा भी जा सकता है (जैसा कि ऊपर एल्गोरिथम में किया गया है)। चरण 3 समय पर पर यादृच्छिक रूप से चुने गए कण () पर आधारित संभावित क्षमता उत्पन्न करता है और चरण 6 में इसे अस्वीकार या स्वीकार करता है। दूसरे शब्दों में , मान पहले उत्पन्न का उपयोग करके उत्पन्न होते हैं

अनुप्रयोग

इस प्रकार के कण फिल्टर और फेनमैन-केएसी कण पद्धतियों का उपयोग अनेक संदर्भों में किया जाता है, तथा ध्वनि अवलोकनों या शक्तिशाली गैर-रैखिकताओं से निपटने के लिए प्रभावी साधन के रूप में, जैसे:

  • बायेसियन अनुमान, मशीन लर्निंग, दुर्लभ घटना प्रतिरूपिकरण
  • जैव सूचना विज्ञान[19]
  • कम्प्यूटेशनल विज्ञान
  • अर्थशास्त्र, वित्तीय गणित और गणितीय वित्त: कण फिल्टर सिमुलेशन निष्पादित कर सकते हैं जो मैक्रो-इकोनॉमिक्स और विकल्प मूल्य निर्धारण में गतिशील स्टोकेस्टिक सामान्य संतुलन मॉडल जैसी समस्याओं से संबंधित उच्च-आयामी और/या सम्मिश्र इंटीग्रल की गणना करने के लिए आवश्यक हैं।[64]
  • अभियांत्रिकी
  • त्रुटिी का पता लगाना और भिन्नता पर्यवेक्षक-आधारित स्कीमा में कण फिल्टर अपेक्षित सेंसर आउटपुट का पूर्वानुमान लगा सकता है जिससे त्रुटिी भिन्नता को सक्षम किया जा सकता है[65][66][67]
  • आण्विक रसायन विज्ञान और कम्प्यूटेशनल भौतिकी
  • फार्माकोकाइनेटिक्स [68]
  • फाइलोजेनेटिक्स
  • रोबोटिक्स, आर्टिफीसियल इंटेलिजेंस : मोंटे कार्लो स्थानीयकरण मोबाइल रोबोट स्थानीयकरण में वास्तविक मानक है[69][70][71]
  • सिग्नल प्रोसेसिंग: दृश्य स्थानीयकरण, ट्रैकिंग, फीचर (कंप्यूटर दृष्टि) पहचान[72]


अन्य कण फिल्टर

  • सहायक कण फिल्टर[73]
  • निवेश संदर्भ कण फ़िल्टर
  • घातीय प्राकृतिक कण फ़िल्टर[74]
  • फेनमैन-केएसी और माध्य-क्षेत्र कण पद्धतियाँ[2][10][5]* गाऊसी कण फिल्टर
  • गॉस-हर्माइट कण फ़िल्टर
  • पदानुक्रमित/स्केलेबल कण फ़िल्टर[75]
  • नज्ड कण फिल्टर[76]
  • कण मार्कोव-चेन मोंटे-कार्लो, उदाहरण देखें। छद्म-सीमांत मेट्रोपोलिस-हेस्टिंग्स एल्गोरिदम।
  • राव-ब्लैकवेलाइज्ड कण फिल्टर[51]
  • नियमित सहायक कण फिल्टर[77]
  • अस्वीकृति प्रतिरूपिकरण |अस्वीकृति-प्रतिरूप आधारित अधिकतम कण फ़िल्टर[78][79]
  • असुगंधित कण फिल्टर

यह भी देखें

संदर्भ

  1. Wills, Adrian G.; Schön, Thomas B. (3 May 2023). "Sequential Monte Carlo: A Unified Review". Annual Review of Control, Robotics, and Autonomous Systems. 6 (1): 159–182. doi:10.1146/annurev-control-042920-015119. ISSN 2573-5144. S2CID 255638127.
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Del Moral, Pierre (1996). "Non Linear Filtering: Interacting Particle Solution" (PDF). Markov Processes and Related Fields. 2 (4): 555–580.
  3. Liu, Jun S.; Chen, Rong (1998-09-01). "गतिशील प्रणालियों के लिए अनुक्रमिक मोंटे कार्लो विधियाँ". Journal of the American Statistical Association. 93 (443): 1032–1044. doi:10.1080/01621459.1998.10473765. ISSN 0162-1459.
  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 Del Moral, Pierre (1998). "मूल्यवान प्रक्रियाओं और अंतःक्रियात्मक कण प्रणालियों को मापें। गैर रेखीय फ़िल्टरिंग समस्याओं के लिए आवेदन". Annals of Applied Probability (Publications du Laboratoire de Statistique et Probabilités, 96-15 (1996) ed.). 8 (2): 438–495. doi:10.1214/aoap/1028903535.
  5. 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 5.11 Del Moral, Pierre (2004). फेनमैन-केएसी सूत्र. वंशावली और अंतःक्रियात्मक कण सन्निकटन।. Springer. Series: Probability and Applications. p. 556. ISBN 978-0-387-20268-6.
  6. 6.0 6.1 6.2 Del Moral, Pierre; Doucet, Arnaud; Jasra, Ajay (2012). "अनुक्रमिक मोंटे कार्लो विधियों के लिए अनुकूली पुन: नमूनाकरण प्रक्रियाओं पर" (PDF). Bernoulli. 18 (1): 252–278. doi:10.3150/10-bej335. S2CID 4506682.
  7. 7.0 7.1 7.2 Del Moral, Pierre (2004). फेनमैन-केएसी सूत्र. वंशावली और अंतःक्रियात्मक कण सन्निकटन. Probability and its Applications. Springer. p. 575. ISBN 9780387202686. Series: Probability and Applications
  8. 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 Del Moral, Pierre; Miclo, Laurent (2000). "Branching and Interacting Particle Systems Approximations of Feynman-Kac Formulae with Applications to Non-Linear Filtering". In Jacques Azéma; Michel Ledoux; Michel Émery; Marc Yor (eds.). Séminaire de Probabilités XXXIV (PDF). Lecture Notes in Mathematics. Vol. 1729. pp. 1–145. doi:10.1007/bfb0103798. ISBN 978-3-540-67314-9.
  9. 9.0 9.1 Del Moral, Pierre; Miclo, Laurent (2000). "फेनमैन-केएसी सूत्रों का एक मोरन कण प्रणाली सन्निकटन।". Stochastic Processes and Their Applications. 86 (2): 193–216. doi:10.1016/S0304-4149(99)00094-0.
  10. 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.10 Del Moral, Pierre (2013). मोंटे कार्लो एकीकरण के लिए माध्य क्षेत्र सिमुलेशन. Chapman & Hall/CRC Press. p. 626. सांख्यिकी एवं अनुप्रयुक्त संभाव्यता पर मोनोग्राफ
  11. Moral, Piere Del; Doucet, Arnaud (2014). "Particle methods: An introduction with applications". ESAIM: Proc. 44: 1–46. doi:10.1051/proc/201444001.
  12. 12.0 12.1 Rosenbluth, Marshall, N.; Rosenbluth, Arianna, W. (1955). "मैक्रोमोलेक्युलर श्रृंखलाओं के औसत विस्तार की मोंटे-कार्लो गणना". J. Chem. Phys. 23 (2): 356–359. Bibcode:1955JChPh..23..356R. doi:10.1063/1.1741967. S2CID 89611599.
  13. 13.0 13.1 13.2 Hetherington, Jack, H. (1984). "आव्यूहों के सांख्यिकीय पुनरावृत्ति पर अवलोकन". Phys. Rev. A. 30 (2713): 2713–2719. Bibcode:1984PhRvA..30.2713H. doi:10.1103/PhysRevA.30.2713.
  14. 14.0 14.1 Del Moral, Pierre (2003). "Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman-Kac semigroups". ESAIM Probability & Statistics. 7: 171–208. doi:10.1051/ps:2003001.
  15. Assaraf, Roland; Caffarel, Michel; Khelif, Anatole (2000). "वॉकरों की एक निश्चित संख्या के साथ डिफ्यूजन मोंटे कार्लो तरीके" (PDF). Phys. Rev. E. 61 (4): 4566–4575. Bibcode:2000PhRvE..61.4566A. doi:10.1103/physreve.61.4566. PMID 11088257. Archived from the original (PDF) on 2014-11-07.
  16. Caffarel, Michel; Ceperley, David; Kalos, Malvin (1993). "परमाणुओं की ग्राउंड-स्टेट ऊर्जा की फेनमैन-केएसी पथ-अभिन्न गणना पर टिप्पणी". Phys. Rev. Lett. 71 (13): 2159. Bibcode:1993PhRvL..71.2159C. doi:10.1103/physrevlett.71.2159. PMID 10054598.
  17. Ocone, D. L. (January 1, 1999). "Asymptotic stability of beneš filters". Stochastic Analysis and Applications. 17 (6): 1053–1074. doi:10.1080/07362999908809648. ISSN 0736-2994.
  18. Maurel, Mireille Chaleyat; Michel, Dominique (January 1, 1984). "परिमित आयामी फ़िल्टर गैर-अस्तित्व परिणाम". Stochastics. 13 (1–2): 83–102. doi:10.1080/17442508408833312. ISSN 0090-9491.
  19. 19.0 19.1 19.2 Hajiramezanali, Ehsan; Imani, Mahdi; Braga-Neto, Ulisses; Qian, Xiaoning; Dougherty, Edward R. (2019). "नियामक मॉडल अनिश्चितता के तहत एकल-सेल प्रक्षेपवक्र का स्केलेबल इष्टतम बायेसियन वर्गीकरण". BMC Genomics. 20 (Suppl 6): 435. arXiv:1902.03188. Bibcode:2019arXiv190203188H. doi:10.1186/s12864-019-5720-3. PMC 6561847. PMID 31189480.
  20. Turing, Alan M. (October 1950). "कंप्यूटिंग मशीनरी और खुफिया". Mind. LIX (238): 433–460. doi:10.1093/mind/LIX.236.433.
  21. Barricelli, Nils Aall (1954). "विकास प्रक्रियाओं के संख्यात्मक उदाहरण". Methodos: 45–68.
  22. Barricelli, Nils Aall (1957). "कृत्रिम तरीकों से सहजीवी विकास प्रक्रियाओं को साकार किया गया". Methodos: 143–182.
  23. Hammersley, J. M.; Morton, K. W. (1954). "गरीब आदमी का मोंटे कार्लो". Journal of the Royal Statistical Society. Series B (Methodological). 16 (1): 23–38. doi:10.1111/j.2517-6161.1954.tb00145.x. JSTOR 2984008.
  24. Barricelli, Nils Aall (1963). "विकास सिद्धांतों का संख्यात्मक परीक्षण। भाग द्वितीय। प्रदर्शन, सहजीवन और स्थलीय जीवन के प्रारंभिक परीक्षण". Acta Biotheoretica. 16 (3–4): 99–126. doi:10.1007/BF01556602. S2CID 86717105.
  25. "Adaptation in Natural and Artificial Systems | The MIT Press". mitpress.mit.edu. Retrieved 2015-06-06.
  26. Fraser, Alex (1957). "स्वचालित डिजिटल कंप्यूटर द्वारा आनुवंशिक प्रणालियों का अनुकरण। I. प्रस्तावना". Aust. J. Biol. Sci. 10 (4): 484–491. doi:10.1071/BI9570484.
  27. Fraser, Alex; Burnell, Donald (1970). जेनेटिक्स में कंप्यूटर मॉडल. New York: McGraw-Hill. ISBN 978-0-07-021904-5.
  28. Crosby, Jack L. (1973). जेनेटिक्स में कंप्यूटर सिमुलेशन. London: John Wiley & Sons. ISBN 978-0-471-18880-3.
  29. Assaraf, Roland; Caffarel, Michel; Khelif, Anatole (2000). "वॉकरों की एक निश्चित संख्या के साथ डिफ्यूजन मोंटे कार्लो तरीके" (PDF). Phys. Rev. E. 61 (4): 4566–4575. Bibcode:2000PhRvE..61.4566A. doi:10.1103/physreve.61.4566. PMID 11088257. Archived from the original (PDF) on 2014-11-07.
  30. Caffarel, Michel; Ceperley, David; Kalos, Malvin (1993). "परमाणुओं की ग्राउंड-स्टेट ऊर्जा की फेनमैन-केएसी पथ-अभिन्न गणना पर टिप्पणी". Phys. Rev. Lett. 71 (13): 2159. Bibcode:1993PhRvL..71.2159C. doi:10.1103/physrevlett.71.2159. PMID 10054598.
  31. Fermi, Enrique; Richtmyer, Robert, D. (1948). "मोंटे कार्लो गणना में जनगणना लेने पर ध्यान दें" (PDF). LAM. 805 (A). Declassified report Los Alamos Archive
  32. Herman, Kahn; Harris, Theodore, E. (1951). "यादृच्छिक नमूने द्वारा कण संचरण का अनुमान" (PDF). Natl. Bur. Stand. Appl. Math. Ser. 12: 27–30.
  33. 33.0 33.1 33.2 Kitagawa, G. (January 1993). "गैर-गाऊसी गैररेखीय राज्य अंतरिक्ष मॉडल के लिए एक मोंटे कार्लो फ़िल्टरिंग और स्मूथिंग विधि" (PDF). Proceedings of the 2nd U.S.-Japan Joint Seminar on Statistical Time Series Analysis: 110–131.
  34. Kitagawa, G. (1996). "गैर-गाऊसी गैररेखीय राज्य अंतरिक्ष मॉडल के लिए मोंटे कार्लो फ़िल्टर और स्मूथ". Journal of Computational and Graphical Statistics. 5 (1): 1–25. doi:10.2307/1390750. JSTOR 1390750.
  35. 35.0 35.1 Gordon, N.J.; Salmond, D.J.; Smith, A.F.M. (April 1993). "Novel approach to nonlinear/non-Gaussian Bayesian state estimation". IEE Proceedings F - Radar and Signal Processing. 140 (2): 107–113. doi:10.1049/ip-f-2.1993.0015. ISSN 0956-375X.
  36. Carvalho, Himilcon; Del Moral, Pierre; Monin, André; Salut, Gérard (July 1997). "Optimal Non-linear Filtering in GPS/INS Integration" (PDF). IEEE Transactions on Aerospace and Electronic Systems. 33 (3): 835. Bibcode:1997ITAES..33..835C. doi:10.1109/7.599254. S2CID 27966240.
  37. P. Del Moral, G. Rigal, and G. Salut. Estimation and nonlinear optimal control : An unified framework for particle solutions
    LAAS-CNRS, Toulouse, Research Report no. 91137, DRET-DIGILOG- LAAS/CNRS contract, April (1991).
  38. P. Del Moral, G. Rigal, and G. Salut. Nonlinear and non-Gaussian particle filters applied to inertial platform repositioning.
    LAAS-CNRS, Toulouse, Research Report no. 92207, STCAN/DIGILOG-LAAS/CNRS Convention STCAN no. A.91.77.013, (94p.) September (1991).
  39. P. Del Moral, G. Rigal, and G. Salut. Estimation and nonlinear optimal control : Particle resolution in filtering and estimation. Experimental results.
    Convention DRET no. 89.34.553.00.470.75.01, Research report no.2 (54p.), January (1992).
  40. P. Del Moral, G. Rigal, and G. Salut. Estimation and nonlinear optimal control : Particle resolution in filtering and estimation. Theoretical results
    Convention DRET no. 89.34.553.00.470.75.01, Research report no.3 (123p.), October (1992).
  41. P. Del Moral, J.-Ch. Noyer, G. Rigal, and G. Salut. Particle filters in radar signal processing : detection, estimation and air targets recognition.
    LAAS-CNRS, Toulouse, Research report no. 92495, December (1992).
  42. P. Del Moral, G. Rigal, and G. Salut. Estimation and nonlinear optimal control : Particle resolution in filtering and estimation.
    Studies on: Filtering, optimal control, and maximum likelihood estimation. Convention DRET no. 89.34.553.00.470.75.01. Research report no.4 (210p.), January (1993).
  43. 43.0 43.1 Crisan, Dan; Gaines, Jessica; Lyons, Terry (1998). "ज़काई के समाधान के लिए एक शाखा कण विधि का अभिसरण". SIAM Journal on Applied Mathematics. 58 (5): 1568–1590. doi:10.1137/s0036139996307371. S2CID 39982562.
  44. Crisan, Dan; Lyons, Terry (1997). "नॉनलाइनियर फ़िल्टरिंग और माप-मूल्यवान प्रक्रियाएँ". Probability Theory and Related Fields. 109 (2): 217–244. doi:10.1007/s004400050131. S2CID 119809371.
  45. Crisan, Dan; Lyons, Terry (1999). "A particle approximation of the solution of the Kushner–Stratonovitch equation". Probability Theory and Related Fields. 115 (4): 549–578. doi:10.1007/s004400050249. S2CID 117725141.
  46. 46.0 46.1 46.2 Crisan, Dan; Del Moral, Pierre; Lyons, Terry (1999). "ब्रांचिंग और इंटरैक्टिंग कण प्रणालियों का उपयोग करके अलग फ़िल्टरिंग" (PDF). Markov Processes and Related Fields. 5 (3): 293–318.
  47. 47.0 47.1 47.2 47.3 Del Moral, Pierre; Guionnet, Alice (1999). "फ़िल्टरिंग के अनुप्रयोगों के साथ मापी गई प्रक्रियाओं की स्थिरता पर". C. R. Acad. Sci. Paris. 39 (1): 429–434.
  48. 48.0 48.1 48.2 48.3 Del Moral, Pierre; Guionnet, Alice (2001). "फ़िल्टरिंग और आनुवंशिक एल्गोरिदम के अनुप्रयोगों के साथ परस्पर क्रिया प्रक्रियाओं की स्थिरता पर". Annales de l'Institut Henri Poincaré. 37 (2): 155–194. Bibcode:2001AIHPB..37..155D. doi:10.1016/s0246-0203(00)01064-5. Archived from the original on 2014-11-07.
  49. 49.0 49.1 Del Moral, P.; Guionnet, A. (1999). "नॉनलाइनियर फ़िल्टरिंग और इंटरैक्टिंग कण प्रणालियों के लिए केंद्रीय सीमा प्रमेय". The Annals of Applied Probability. 9 (2): 275–297. doi:10.1214/aoap/1029962742. ISSN 1050-5164.
  50. 50.0 50.1 Del Moral, Pierre; Miclo, Laurent (2001). "फेनमैन-केएसी और जेनेटिक मॉडल के लिए वंशावली और अराजकता का बढ़ता प्रसार". The Annals of Applied Probability. 11 (4): 1166–1198. doi:10.1214/aoap/1015345399. ISSN 1050-5164.
  51. 51.0 51.1 Doucet, A.; De Freitas, N.; Murphy, K.; Russell, S. (2000). Rao–Blackwellised particle filtering for dynamic Bayesian networks. Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence. pp. 176–183. CiteSeerX 10.1.1.137.5199.
  52. 52.0 52.1 Del Moral, Pierre; Miclo, Laurent (2001). "फेनमैन-केएसी और जेनेटिक मॉडल के लिए वंशावली और अराजकता का बढ़ता प्रसार". Annals of Applied Probability. 11 (4): 1166–1198.
  53. 53.0 53.1 Del Moral, Pierre; Doucet, Arnaud; Singh, Sumeetpal, S. (2010). "फेनमैन-केएसी सूत्रों की एक पिछड़ा कण व्याख्या" (PDF). M2AN. 44 (5): 947–976. doi:10.1051/m2an/2010048. S2CID 14758161.
  54. Vergé, Christelle; Dubarry, Cyrille; Del Moral, Pierre; Moulines, Eric (2013). "On parallel implementation of Sequential Monte Carlo methods: the island particle model". Statistics and Computing. 25 (2): 243–260. arXiv:1306.3911. Bibcode:2013arXiv1306.3911V. doi:10.1007/s11222-013-9429-x. S2CID 39379264.
  55. Chopin, Nicolas; Jacob, Pierre, E.; Papaspiliopoulos, Omiros (2011). "SMC^2: an efficient algorithm for sequential analysis of state-space models". arXiv:1101.1528v3 [stat.CO].
  56. Andrieu, Christophe; Doucet, Arnaud; Holenstein, Roman (2010). "कण मार्कोव श्रृंखला मोंटे कार्लो विधियाँ". Journal of the Royal Statistical Society, Series B. 72 (3): 269–342. doi:10.1111/j.1467-9868.2009.00736.x.
  57. Del Moral, Pierre; Patras, Frédéric; Kohn, Robert (2014). "फेनमैन-केएसी और पार्टिकल मार्कोव श्रृंखला मोंटे कार्लो मॉडल पर". arXiv:1404.5733 [math.PR].
  58. Del Moral, Pierre; Doucet, Arnaud; Jasra, Ajay (2011). "अनुमानित बायेसियन गणना के लिए एक अनुकूली अनुक्रमिक मोंटे कार्लो विधि". Statistics and Computing. 22 (5): 1009–1020. CiteSeerX 10.1.1.218.9800. doi:10.1007/s11222-011-9271-y. ISSN 0960-3174. S2CID 4514922.
  59. Martin, James S.; Jasra, Ajay; Singh, Sumeetpal S.; Whiteley, Nick; Del Moral, Pierre; McCoy, Emma (May 4, 2014). "स्मूथिंग के लिए अनुमानित बायेसियन गणना". Stochastic Analysis and Applications. 32 (3): 397–420. arXiv:1206.5208. doi:10.1080/07362994.2013.879262. ISSN 0736-2994. S2CID 17117364.
  60. Del Moral, Pierre; Rio, Emmanuel (2011). "माध्य क्षेत्र कण मॉडल के लिए एकाग्रता असमानताएँ". The Annals of Applied Probability. 21 (3): 1017–1052. arXiv:1211.1837. doi:10.1214/10-AAP716. ISSN 1050-5164. S2CID 17693884.
  61. Del Moral, Pierre; Hu, Peng; Wu, Liming (2012). परस्पर क्रिया करने वाली कण प्रक्रियाओं की एकाग्रता गुणों पर. Hanover, MA, USA: Now Publishers Inc. ISBN 978-1601985125.
  62. Bejuri, Wan Mohd Yaakob Wan; Mohamad, Mohd Murtadha; Raja Mohd Radzi, Raja Zahilah; Salleh, Mazleena; Yusof, Ahmad Fadhil (2017-10-18). "कण फिल्टर के लिए अनुकूली मेमोरी-आधारित एकल वितरण पुन: नमूनाकरण". Journal of Big Data. 4 (1): 33. doi:10.1186/s40537-017-0094-3. ISSN 2196-1115. S2CID 256407088.
  63. Gelman, Andrew; Carlin, John B.; Stern, Hal S.; Dunson, David B.; Vehtari, Aki; Rubin, Donald B. (2013). बायेसियन डेटा विश्लेषण, तीसरा संस्करण. Chapman and Hall/CRC. ISBN 978-1-4398-4095-5.
  64. Creal, Drew (2012). "अर्थशास्त्र और वित्त के लिए अनुक्रमिक मोंटे कार्लो विधियों का एक सर्वेक्षण". Econometric Reviews. 31 (2): 245–296. doi:10.1080/07474938.2011.607333. S2CID 2730761.
  65. Shen, Yin; Xiangping, Zhu (2015). "इंटेलिजेंट पार्टिकल फिल्टर और नॉनलाइनियर सिस्टम की गलती का पता लगाने के लिए इसका अनुप्रयोग". IEEE Transactions on Industrial Electronics. 62 (6): 1. doi:10.1109/TIE.2015.2399396. S2CID 23951880.
  66. D'Amato, Edigio; Notaro, Immacolata; Nardi, Vito Antonio; Scordamaglia, Valerio (2021). "A Particle Filtering Approach for Fault Detection and Isolation of UAV IMU Sensors: Design, Implementation and Sensitivity Analysis". Sensors. 21 (9): 3066. Bibcode:2021Senso..21.3066D. doi:10.3390/s21093066. PMC 8124649. PMID 33924891.
  67. Kadirkamanathan, V.; Li, P.; Jaward, M. H.; Fabri, S. G. (2002). "गैर-रेखीय स्टोकेस्टिक प्रणालियों में कण फ़िल्टरिंग-आधारित दोष का पता लगाना". International Journal of Systems Science. 33 (4): 259–265. doi:10.1080/00207720110102566. S2CID 28634585.
  68. Bonate P: Pharmacokinetic-Pharmacodynamic Modeling and Simulation. Berlin: Springer; 2011.
  69. Dieter Fox, Wolfram Burgard, Frank Dellaert, and Sebastian Thrun, "Monte Carlo Localization: Efficient Position Estimation for Mobile Robots." Proc. of the Sixteenth National Conference on Artificial Intelligence John Wiley & Sons Ltd, 1999.
  70. Sebastian Thrun, Wolfram Burgard, Dieter Fox. Probabilistic Robotics MIT Press, 2005. Ch. 8.3 ISBN 9780262201629.
  71. Sebastian Thrun, Dieter Fox, Wolfram Burgard, Frank Dellaert. "Robust monte carlo localization for mobile robots." Artificial Intelligence 128.1 (2001): 99–141.
  72. Abbasi, Mahdi; Khosravi, Mohammad R. (2020). "नेत्र वीडियो के बड़े डेटासेट के लिए एक मजबूत और सटीक कण फ़िल्टर-आधारित पुतली का पता लगाने की विधि". Journal of Grid Computing. 18 (2): 305–325. doi:10.1007/s10723-019-09502-1. S2CID 209481431.
  73. Pitt, M.K.; Shephard, N. (1999). "Filtering Via Simulation: Auxiliary Particle Filters". Journal of the American Statistical Association. 94 (446): 590–591. doi:10.2307/2670179. JSTOR 2670179. Retrieved 2008-05-06.
  74. Zand, G.; Taherkhani, M.; Safabakhsh, R. (2015). "Exponential Natural Particle Filter". arXiv:1511.06603 [cs.LG].
  75. Canton-Ferrer, C.; Casas, J.R.; Pardàs, M. (2011). "Human Motion Capture Using Scalable Body Models". Computer Vision and Image Understanding. 115 (10): 1363–1374. doi:10.1016/j.cviu.2011.06.001. hdl:2117/13393.
  76. Akyildiz, Ömer Deniz; Míguez, Joaquín (2020-03-01). "कण फिल्टर को कुरेदना". Statistics and Computing. 30 (2): 305–330. doi:10.1007/s11222-019-09884-y. ISSN 1573-1375. S2CID 88515918.
  77. Liu, J.; Wang, W.; Ma, F. (2011). "A Regularized Auxiliary Particle Filtering Approach for System State Estimation and Battery Life Prediction". Smart Materials and Structures. 20 (7): 1–9. Bibcode:2011SMaS...20g5021L. doi:10.1088/0964-1726/20/7/075021. S2CID 110670991.
  78. Blanco, J.L.; Gonzalez, J.; Fernandez-Madrigal, J.A. (2008). An Optimal Filtering Algorithm for Non-Parametric Observation Models in Robot Localization. IEEE International Conference on Robotics and Automation (ICRA'08). pp. 461–466. CiteSeerX 10.1.1.190.7092.
  79. Blanco, J.L.; Gonzalez, J.; Fernandez-Madrigal, J.A. (2010). "Optimal Filtering for Non-Parametric Observation Models: Applications to Localization and SLAM". The International Journal of Robotics Research. 29 (14): 1726–1742. CiteSeerX 10.1.1.1031.4931. doi:10.1177/0278364910364165. S2CID 453697.


ग्रन्थसूची


बाहरी संबंध