ठेर्मोग्रविमेत्रिक विश्लेषण

From alpha
Jump to navigation Jump to search
Thermogravimetric analysis
AcronymTGA
ClassificationThermal analysis

Thermogravimetric analyser.jpg

A typical TGA system
Other techniques
RelatedIsothermal microcalorimetry
Differential scanning calorimetry
Dynamic mechanical analysis
Thermomechanical analysis
Differential thermal analysis
Dielectric thermal analysis

थर्मोग्रैविमेट्रिक विश्लेषण या थर्मल ग्रेविमेट्रिक विश्लेषण (टीजीए) थर्मल विश्लेषण का एक तरीका है जिसमें तापमान में परिवर्तन के रूप में भौतिक विज्ञान में समय के साथ एक नमूना का द्रव्यमान माप होता है। यह माप भौतिक घटनाओं, जैसे चरण संक्रमण, [[अवशोषण (रसायन विज्ञान)]], सोखना और desorption के बारे में जानकारी प्रदान करता है; साथ ही साथ रासायनिक घटनाएं जिनमें रासायनिक अवशोषण, थर्मल अपघटन, और ठोस-गैस प्रतिक्रियाएं (जैसे, ऑक्सीकरण या रिडॉक्स ) शामिल हैं।[1]


थर्मोग्रैविमेट्रिक विश्लेषक

थर्मोग्रैविमेट्रिक विश्लेषण (टीजीए) एक थर्मोग्रैविमेट्रिक विश्लेषक के रूप में संदर्भित एक उपकरण पर किया जाता है। एक थर्मोग्रैविमेट्रिक विश्लेषक लगातार द्रव्यमान को मापता है जबकि नमूने का तापमान समय के साथ बदलता रहता है। द्रव्यमान, तापमान और समय को थर्मोग्रैविमेट्रिक विश्लेषण में आधार माप माना जाता है जबकि इन तीन आधार मापों से कई अतिरिक्त उपाय प्राप्त किए जा सकते हैं।

एक विशिष्ट थर्मोग्रैविमेट्रिक विश्लेषक में प्रोग्राम करने योग्य नियंत्रण तापमान के साथ भट्टी के अंदर स्थित एक नमूना पैन के साथ एक सटीक संतुलन होता है। थर्मल प्रतिक्रिया करने के लिए तापमान को आम तौर पर स्थिर दर पर बढ़ाया जाता है (या कुछ अनुप्रयोगों के लिए तापमान को निरंतर द्रव्यमान हानि के लिए नियंत्रित किया जाता है)। तापीय प्रतिक्रिया विभिन्न प्रकार के वायुमंडलों में हो सकती है जिनमें शामिल हैं: हवा, निर्वात, अक्रिय गैस, ऑक्सीकरण/घटाने वाली गैसें, संक्षारक गैसें, कार्बराइजिंग गैसें, तरल पदार्थ के वाष्प या स्व-निर्मित वातावरण; साथ ही विभिन्न प्रकार के दबाव जिनमें शामिल हैं: एक उच्च निर्वात, उच्च दबाव, निरंतर दबाव, या एक नियंत्रित दबाव।

थर्मल रिएक्शन से एकत्र किए गए थर्मोग्रैविमेट्रिक डेटा को वाई-अक्ष पर द्रव्यमान या प्रारंभिक द्रव्यमान के प्रतिशत बनाम एक्स-अक्ष पर तापमान या समय में संकलित किया जाता है। यह प्लॉट, जो अक्सर चौरसाई होता है, को TGA कर्व कहा जाता है। टीजीए वक्र (डीटीजी वक्र) का पहला व्युत्पन्न गहराई से व्याख्याओं के साथ-साथ अंतर थर्मल विश्लेषण के लिए उपयोगी विभक्ति बिंदुओं को निर्धारित करने के लिए प्लॉट किया जा सकता है।

विशेषता अपघटन पैटर्न के विश्लेषण के माध्यम से सामग्री लक्षण वर्णन के लिए एक टीजीए का उपयोग किया जा सकता है। यह thermoplastics , थर्मोसेट्स, इलास्टोमर्स, मिश्रित सामग्री, प्लास्टिक की फिल्म ों, फाइबर, कोटिंग्स, पेंट्स और ईंधन सहित बहुलक सामग्री के अध्ययन के लिए एक विशेष रूप से उपयोगी तकनीक है।

टीजीए के प्रकार

थर्मोग्रैविमेट्री के तीन प्रकार हैं:

  • समतापीय या स्थैतिक थर्मोग्रैविमेट्री: इस तकनीक में, नमूना वजन को एक स्थिर तापमान पर समय के कार्य के रूप में दर्ज किया जाता है।
  • क्वासिस्टैटिक थर्मोग्रैविमेट्री: इस तकनीक में, नमूना तापमान को इज़ोटेर्माल अंतराल द्वारा अलग किए गए अनुक्रमिक चरणों में उठाया जाता है, जिसके दौरान नमूना द्रव्यमान अगले तापमान रैंप की शुरुआत से पहले स्थिरता तक पहुंच जाता है।
  • डायनेमिक थर्मोग्रैविमेट्री: इस तकनीक में, सैंपल को एक ऐसे वातावरण में गर्म किया जाता है, जिसका तापमान रैखिक तरीके से बदलता है।

अनुप्रयोग

थर्मल स्थिरता

सामग्री की थर्मल स्थिरता का मूल्यांकन करने के लिए टीजीए का उपयोग किया जा सकता है। एक वांछित तापमान सीमा में, यदि कोई प्रजाति ऊष्मीय रूप से स्थिर है, तो कोई बड़े पैमाने पर परिवर्तन नहीं देखा जाएगा। नगण्य जन हानि TGA ट्रेस में बहुत कम या कोई ढलान से मेल खाती है। टीजीए किसी सामग्री का ऊपरी उपयोग तापमान भी देता है। इस तापमान से परे सामग्री नीचा दिखाना शुरू कर देगी।

TGA का उपयोग पॉलिमर के विश्लेषण में किया जाता है। पॉलिमर आमतौर पर विघटित होने से पहले पिघल जाते हैं, इस प्रकार टीजीए का उपयोग मुख्य रूप से पॉलिमर की थर्मल स्थिरता की जांच के लिए किया जाता है। ज़्यादातर पॉलिमर 200 °C से पहले पिघल जाते हैं या ख़राब हो जाते हैं। हालांकि, ऊष्मीय रूप से स्थिर पॉलिमर का एक वर्ग है जो हवा में कम से कम 300 डिग्री सेल्सियस और अक्रिय गैसों में 500 डिग्री सेल्सियस के तापमान को संरचनात्मक परिवर्तन या शक्ति हानि के बिना सहन करने में सक्षम है, जिसका विश्लेषण टीजीए द्वारा किया जा सकता है।[2] [3] [4]


ऑक्सीकरण और दहन

सबसे सरल सामग्री लक्षण वर्णन एक प्रतिक्रिया के बाद शेष अवशेष है। उदाहरण के लिए, तापमान और दबाव के लिए मानक स्थितियों में थर्मोग्रैविमेट्रिक विश्लेषक में नमूना लोड करके दहन प्रतिक्रिया का परीक्षण किया जा सकता है। थर्मोग्रेविमेट्रिक विश्लेषक नमूने में आयन दहन को उसके प्रज्वलन तापमान से परे गर्म करके पैदा करेगा। प्रारंभिक द्रव्यमान के प्रतिशत के रूप में y- अक्ष के साथ प्लॉट किए गए परिणामी TGA वक्र, वक्र के अंतिम बिंदु पर अवशेष दिखाएंगे।

टीजीए में ऑक्सीडेटिव मास लॉस सबसे आम देखने योग्य नुकसान हैं।[5] कॉपर मिश्र धातुओं में ऑक्सीकरण के प्रतिरोध का अध्ययन करना बहुत महत्वपूर्ण है। उदाहरण के लिए, नासा (नेशनल एरोनॉटिक्स एंड स्पेस एडमिनिस्ट्रेशन) दहन इंजनों में उनके संभावित उपयोग के लिए उन्नत तांबे मिश्र धातुओं पर शोध कर रहा है। हालाँकि, इन मिश्र धातुओं में ऑक्सीडेटिव गिरावट हो सकती है क्योंकि ऑक्सीजन से भरपूर वातावरण में कॉपर ऑक्साइड बनते हैं। ऑक्सीकरण का प्रतिरोध महत्वपूर्ण है क्योंकि नासा शटल सामग्री का पुन: उपयोग करने में सक्षम होना चाहता है। TGA का उपयोग व्यावहारिक उपयोग के लिए सामग्री के स्थैतिक ऑक्सीकरण का अध्ययन करने के लिए किया जा सकता है।

टीजी विश्लेषण के दौरान दहन उत्पादित टीजीए थर्मोग्राम में बने अलग-अलग निशानों द्वारा पहचाना जा सकता है। एक दिलचस्प उदाहरण के रूप में उत्पादित अपरिष्कृत कार्बन नैनोट्यूब के नमूनों के साथ होता है जिसमें धातु उत्प्रेरक की एक बड़ी मात्रा मौजूद होती है।. दहन के कारण, एक TGA ट्रेस एक अच्छे व्यवहार वाले कार्य के सामान्य रूप से विचलित हो सकता है। यह घटना तेजी से तापमान परिवर्तन से उत्पन्न होती है। जब वजन और तापमान बनाम समय की साजिश रची जाती है, तो पहले व्युत्पन्न भूखंड में एक नाटकीय ढलान परिवर्तन नमूने के बड़े पैमाने पर नुकसान और थर्मोकपल द्वारा देखे गए तापमान में अचानक वृद्धि के साथ समवर्ती होता है। बड़े पैमाने पर नुकसान खराब नियंत्रित वजन घटाने के कारण कार्बन के ऑक्सीकरण से परे, सामग्री में विसंगतियों के कारण जलने से निकलने वाले धुएं के कणों से हो सकता है।

अलग-अलग बिंदुओं पर एक ही नमूने पर अलग-अलग वजन घटाने का उपयोग नमूने के अनिसोट्रॉपी के निदान के रूप में भी किया जा सकता है। उदाहरण के लिए, ऊपर की तरफ और नीचे के हिस्से को नमूने के अंदर बिखरे हुए कणों के साथ नमूनाकरण अवसादन का पता लगाने के लिए उपयोगी हो सकता है, क्योंकि थर्मोग्राम ओवरलैप नहीं होंगे, लेकिन अगर कण वितरण एक तरफ से अलग है तो उनके बीच एक अंतर दिखाएगा।[6][7]


थर्मोग्रैविमेट्रिक कैनेटीक्स

विभिन्न सामग्रियों के पायरोलिसिस और दहन प्रक्रियाओं में शामिल थर्मल (उत्प्रेरक या गैर-उत्प्रेरक) अपघटन की प्रतिक्रिया तंत्र में अंतर्दृष्टि के लिए थर्मोग्रैविमेट्रिक कैनेटीक्स का पता लगाया जा सकता है।[8][9][10][11][12][13][14] किसिंजर विधि का उपयोग करके अपघटन प्रक्रिया की सक्रियण ऊर्जा की गणना की जा सकती है।[15] हालांकि एक स्थिर ताप दर अधिक सामान्य है, एक निरंतर द्रव्यमान हानि दर विशिष्ट प्रतिक्रिया कैनेटीक्स को रोशन कर सकती है। उदाहरण के लिए, पॉलीविनाइल ब्यूटिरल के कार्बोनाइजेशन के काइनेटिक पैरामीटर 0.2 wt%/min की निरंतर द्रव्यमान हानि दर का उपयोग करके पाए गए।[16]


अन्य उपकरणों के संयोजन में ऑपरेशन

थर्मोग्रैविमेट्रिक विश्लेषण को अक्सर अन्य प्रक्रियाओं के साथ जोड़ा जाता है या अन्य विश्लेषणात्मक तरीकों के साथ संयोजन में उपयोग किया जाता है।

उदाहरण के लिए, TGA उपकरण लगातार एक नमूने का वजन करता है क्योंकि इसे फूरियर रूपांतरण अवरक्त स्पेक्ट्रोस्कोपी (FTIR) और मास स्पेक्ट्रोमेट्री गैस विश्लेषण के साथ युग्मन के लिए 2000 °C तक के तापमान तक गर्म किया जाता है। जैसे ही तापमान बढ़ता है, नमूने के विभिन्न घटक विघटित हो जाते हैं और प्रत्येक परिणामी द्रव्यमान परिवर्तन का वजन प्रतिशत मापा जा सकता है।

Comparison of Thermal gravimetric analysis and Differential thermal analysis techniques:
Sr.No. Thermal gravimetric analysis (TGA) Differential thermal analysis (DTA)
1 In TGA the weight loss or gain is measured as a function of temperature or time. In DTA the temperature difference between a sample and reference is measured as a function of temperature.
2 The TGA curve appears as steps involving horizontal and curved portions. The DTA curve shows upward and downward peaks.
3 Instrument used in TGA is a thermobalance. Instrument used in DTA is a DTA Apparatus.
4 TGA gives information only for substances which show a change in mass on heating or cooling. DTA does not require a change in mass of the sample in order to obtain meaningful information.

DTA can be used to study any process in which heat is absorbed or liberated.

5 The upper temperature used for TGA is normally 1000 °C. The upper temperature used for DTA is often higher than TGA (As high as 1600 °C).
6 Quantitative analysis is done from the thermal curve by measuring the loss in mass m. Quantitative analysis is done by measuring the peak areas and peak heights.
7 The data obtained in TGA is useful in determining purity and composition of materials, drying and ignition temperatures of materials and knowing the stability temperatures of compounds. The data obtained in DTA is used to determine temperatures of transitions, reactions and melting points of substances.


संदर्भ

  1. Coats, A. W.; Redfern, J. P. (1963). "Thermogravimetric Analysis: A Review". Analyst. 88 (1053): 906–924. Bibcode:1963Ana....88..906C. doi:10.1039/AN9638800906.
  2. Liu, X.; Yu, W. (2006). "टीजीए द्वारा उच्च प्रदर्शन फाइबर की थर्मल स्थिरता का मूल्यांकन". Journal of Applied Polymer Science. 99 (3): 937–944. doi:10.1002/app.22305.
  3. Marvel, C. S. (1972). "तापीय रूप से स्थिर पॉलिमर का संश्लेषण". Ft. Belvoir: Defense Technical Information Center.
  4. Tao, Z.; Jin, J.; Yang, S.; Hu, D.; Li, G.; Jiang, J. (2009). "उच्च तापीय स्थिरता और कम ढांकता हुआ स्थिरांक के साथ फ्लोरिनेटेड PBO का संश्लेषण और लक्षण वर्णन". Journal of Macromolecular Science, Part B. 48 (6): 1114–1124. Bibcode:2009JMSB...48.1114Z. doi:10.1080/00222340903041244. S2CID 98016727.
  5. Voitovich, V. B.; Lavrenko, V. A.; Voitovich, R. F.; Golovko, E. I. (1994). "जिरकोनियम के उच्च तापमान ऑक्सीकरण पर शुद्धता का प्रभाव". Oxidation of Metals. 42 (3–4): 223–237. doi:10.1007/BF01052024. S2CID 98272654.
  6. Lopresti, Mattia; Alberto, Gabriele; Cantamessa, Simone; Cantino, Giorgio; Conterosito, Eleonora; Palin, Luca; Milanesio, Marco (January 28, 2020). "Light Weight, Easy Formable and Non-Toxic Polymer-Based Composites for Hard X-ray Shielding: A Theoretical and Experimental Study". International Journal of Molecular Sciences. 21 (3): 833. doi:10.3390/ijms21030833. PMC 7037949. PMID 32012889.
  7. Lopresti, Mattia; Palin, Luca; Alberto, Gabriele; Cantamessa, Simone; Milanesio, Marco (20 November 2020). "बेहतर फैलाव के साथ लेपित बेरियम सल्फेट द्वारा मिश्रित एक्स-रे परिरक्षण सामग्री के लिए एपॉक्सी रेजिन कंपोजिट". Materials Today Communications. 26: 101888. doi:10.1016/j.mtcomm.2020.101888. S2CID 229492978.
  8. Reyes-Labarta, J.A.; Marcilla, A. (2012). "थर्मल उपचार और क्रॉसलिंक्ड एथिलीन विनील एसीटेट-पॉलीएथिलीन-एज़ोडीकार्बोनामाइड-जेडएनओ फोम का क्षरण। पूर्ण काइनेटिक मॉडलिंग और विश्लेषण". Industrial & Engineering Chemistry Research. 51 (28): 9515–9530. doi:10.1021/ie3006935.
  9. Reyes-Labarta, J.A.; Marcilla, A. (2008). "वाणिज्यिक एज़ोडिकार्बोनामाइड के थर्मल गिरावट में शामिल अपघटन का काइनेटिक अध्ययन" (PDF). Journal of Applied Polymer Science. 107 (1): 339–346. doi:10.1002/app.26922. hdl:10045/24682. Archived (PDF) from the original on 2021-05-01. Retrieved 2022-02-24.
  10. Marcilla, A.; Gómez, A.; Reyes, J.A. (2001). "MCM-41 Catalytic Pyrolysis of Ethylene-Vinyl Acetate Copolymers. Kinetic Model". Polymer. 42 (19): 8103–8111. doi:10.1016/S0032-3861(01)00277-4.
  11. Marcilla, A.; Gómez, A.; Reyes-Labarta, J.A.; Giner, A. (2003). "Catalytic pyrolysis of polypropylene using MCM-41. Kinetic model". Polymer Degradation and Stability. 80 (2): 233–240. doi:10.1016/S0141-3910(02)00403-2.
  12. Marcilla, A.; Gómez, A.; Reyes-Labarta, J.A.; Giner, A.; Hernández, F. (2003). "Kinetic study of polypropylene pyrolysis using ZSM-5 and an equilibrium fluid catalytic cracking catalyst". Journal of Analytical and Applied Pyrolysis. 68–63: 467–480. doi:10.1016/S0165-2370(03)00036-6.
  13. Conesa, J.A.; Caballero, J.A.; Reyes-Labarta, J.A. (2004). "मॉडलिंग थर्मल अपघटन के लिए कृत्रिम तंत्रिका नेटवर्क". Journal of Analytical and Applied Pyrolysis. 71: 343–352. doi:10.1016/S0165-2370(03)00093-7.
  14. Reyes, J.A.; Conesa, J.A.; Marcilla, A. (2001). "पायरोलिसिस और पॉलीकोटेड कार्टन रीसाइक्लिंग का दहन। काइनेटिक मॉडल और एमएस विश्लेषण". Journal of Analytical and Applied Pyrolysis. 58–59: 747–763. doi:10.1016/S0165-2370(00)00123-6.
  15. Janeta, Mateusz; Szafert, Sławomir (2017-10-01). "Synthesis, characterization and thermal properties of T8 type amido-POSS with p-halophenyl end-group". Journal of Organometallic Chemistry. Organometallic Chemistry: from Stereochemistry to Catalysis to Nanochemistry honoring Professor John Gladysz's 65 birthday. 847 (Supplement C): 173–183. doi:10.1016/j.jorganchem.2017.05.044.
  16. Tikhonov, N. A.; Arkhangelsky, I. V.; Belyaev, S. S.; Matveev, A. T. (2009). "बहुलक गैर बुने हुए पदार्थों का जलकर कोयला". Thermochimica Acta. 486 (1–2): 66–70. doi:10.1016/j.tca.2008.12.020.