लिंडब्लाडियन

From alpha
Jump to navigation Jump to search

क्वांटम यांत्रिकी में, गोरिनी-कोसाकोव्स्की-सुदर्शन-लिंडब्लैड समीकरण (जीकेएसएल समीकरण, जिसका नाम विटोरियो गोरिनी, आंद्रेज कोसाकोव्स्की, ई.सी. जॉर्ज सुदर्शन और गोरान लिंडब्लैड (भौतिक विज्ञानी) या गोरान लिंडब्लैड के नाम पर रखा गया है), लिंडब्लैड रूप में मास्टर समीकरण, क्वांटम लिउविलियन, या लिंडब्लैडियन मार्कोव प्रक्रिया क्वांटम मास्टर समीकरण के सामान्य रूपों में से है जो विवृत क्वांटम प्रणाली का वर्णन करता है। इस प्रकार यह क्वांटम प्रणाली प्रदर्शित के लिए श्रोडिंगर समीकरण को सामान्यीकृत करता है; अर्थात्, प्रणाली अपने वातावरण के संपर्क में हैं। परिणामी गतिशीलता अब एकात्मक नहीं है, किन्तु पुनः भी ट्रेस-संरक्षण और पूर्ण रूप से धनात्मक या ट्रेस-संरक्षण और किसी भी प्रारंभिक स्थिति के लिए पूर्ण रूप से धनात्मक होने की प्रोपर्टी को संतुष्ट करती है।[1] श्रोडिंगर समीकरण या, वास्तव में, वॉन न्यूमैन समीकरण, जीकेएसएल समीकरण का विशेष स्थिति है, जिसके कारण कुछ अनुमान लगाई गई हैं कि क्वांटम यांत्रिकी को लिंडब्लैड समीकरण के आगे के अनुप्रयोग और विश्लेषण के माध्यम से उत्पादक रूप से विस्तारित और विस्तारित किया जा सकता है।[2] श्रोडिंगर समीकरण स्थिति सदिश से संबंधित है, जो केवल शुद्ध क्वांटम अवस्था का वर्णन कर सकता है और इस प्रकार घनत्व आव्यूह की तुलना में कम सामान्य है, जो मिश्रित अवस्था (भौतिकी) का भी वर्णन कर सकता है।

प्रेरणा

इस प्रकार क्वांटम यांत्रिकी के विहित सूत्रीकरण में, प्रणाली का समय विकास एकात्मक गतिशीलता द्वारा नियंत्रित होता है। इसका तात्पर्य यह है कि पूर्ण प्रक्रिया में कोई क्षय नहीं होता है और चरण सुसंगतता बनी रहती है, और यह इस तथ्य का परिणाम है कि स्वतंत्रता की सभी भाग लेने वाली डिग्री पर विचार किया जाता है। चूंकि, कोई भी वास्तविक भौतिक प्रणाली पूर्णतः पृथक नहीं है, और अपने पर्यावरण के साथ इंट्रैक्ट करेगी। प्रणाली के बाहर स्वतंत्रता की डिग्री के साथ इस अंतःक्रिया के परिणामस्वरूप वातावरण में ऊर्जा का अपव्यय होता है, जिससे चरण का क्षय और यादृच्छिककरण होता है। इससे भी अधिक, किसी क्वांटम प्रणाली की उसके पर्यावरण के साथ अंतःक्रिया को समझना विभिन्न सामान्यतः देखी जाने वाली घटनाओं को समझने के लिए आवश्यक है, जैसे उत्तेजित परमाणुओं से प्रकाश का सहज उत्सर्जन, या लेजर जैसे विभिन्न क्वांटम तकनीकी उपकरणों का प्रदर्शन किया गया था।

इस प्रकार किसी क्वांटम प्रणाली की उसके पर्यावरण के साथ अंतःक्रिया के समाधान के लिए कुछ गणितीय तकनीकें प्रस्तुत की गई हैं। इनमें घनत्व आव्यूह और उससे जुड़े मास्टर समीकरण का उपयोग का उपयोग किया जाता है। जबकि सैद्धांतिक रूप से क्वांटम गतिशीलता को हल करने का यह दृष्टिकोण श्रोडिंगर चित्र या हाइजेनबर्ग चित्र के समान है, यह असंगत प्रक्रियाओं को सम्मिलित करने की अधिक सरलता से अनुमति देता है, जो पर्यावरणीय इंट्रैक्ट का प्रतिनिधित्व करते हैं। घनत्व संचालक की प्रोपर्टी यह है कि यह क्वांटम स्थितियों के मौलिक मिश्रण का प्रतिनिधित्व कर सकता है, और इस प्रकार तथाकथित विवृत क्वांटम प्रणाली की गतिशीलता का स्पष्ट वर्णन करने के लिए महत्वपूर्ण है।

परिभाषा

इस प्रकार प्रणाली के घनत्व आव्यूह के लिए लिंडब्लैड मास्टर समीकरण ρ के रूप में लिखा जा सकता है [1] (शैक्षणिक परिचय के लिए आप इसका उल्लेख कर सकते हैं [3])

जहाँ एंटीकम्यूटेटर है, हैमिल्टनियन प्रणाली है, जो गतिकी के एकात्मक तथ्यों का वर्णन करती है, और जंप संचालक का समूह है जो गतिशीलता के विघटनकारी भाग का वर्णन करता है। जंप संचालक का आकार बताता है कि पर्यावरण प्रणाली पर कैसे कार्य करता है, और अंततः प्रणाली-पर्यावरण गतिशीलता के सूक्ष्म मॉडल से निर्धारित किया जाना चाहिए। इस प्रकार अंत में, गैर-ऋणात्मक गुणांकों का सेट है जिसे अवमंदन दर कहा जाता है। यदि सभी एकात्मक प्लाज्मा का वर्णन करने वाले वॉन न्यूमैन गुणांक को पुनः प्राप्त करना संभव है, जो मौलिक लिउविले के प्रमेय (हैमिल्टनियन) का क्वांटम एनालॉग है।

अधिक सामान्यतः, जीकेएसएल समीकरण का रूप होता है

जहाँ इच्छानुसार संचालक हैं और h धनात्मक-निश्चित आव्यूह आव्यूह है। इस प्रकार उत्तरार्द्ध यह सुनिश्चित करने के लिए सख्त आवश्यकता है कि गतिशीलता ट्रेस-संरक्षित और पूर्ण रूप से धनात्मक है। की संख्या संचालक का कार्य इच्छानुसार है, और उन्हें किसी विशेष गुण को पूर्ण करने की आवश्यकता नहीं है। किन्तु यदि -आयामी प्रणाली है , इसे दिखाया जा सकता है [1] कि मास्टर समीकरण संचालक को सेट द्वारा पूर्ण रूप से वर्णित किया जा सकता है, किन्तु वह संचालक के समष्टि के लिए आधार बनाते हों।

चूँकि आव्यूह h धनात्मक अर्धनिश्चित है, इसे एकात्मक परिवर्तन u के साथ विकर्ण किया जा सकता है:

जहां ईजेनवैल्यू γi गैर-ऋणात्मक हैं। यदि हम किसी अन्य ऑर्थोनॉर्मल संचालक आधार को परिभाषित करते हैं

इस प्रकार यह मास्टर समीकरण को पहले के समान रूप में कम कर देता है:

  

क्वांटम गतिशील अर्धसमूह

इस प्रकार लिंडब्लैडियन द्वारा विभिन्न समय के लिए बनाए गए मानचित्रों को सामूहिक रूप से क्वांटम गतिशील अर्धसमूह के रूप में संदर्भित किया जाता है, जो एकल समय पैरामीटर द्वारा अनुक्रमित घनत्व आव्यूह के समष्टि पर क्वांटम गतिशील मानचित्रों का एक वर्ग है जो अर्धसमूह का पालन करता है।

इस प्रकार लिंडब्लैड समीकरण द्वारा प्राप्त किया जा सकता है

जो की रैखिकता द्वारा एक रैखिक सुपरसंचालक है। अर्धसमूह को इस प्रकार पुनर्प्राप्त किया जा सकता है


अपरिवर्तनीय गुण

इस प्रकार लिंडब्लाड समीकरण लिंडब्लाड संचालक और स्थिरांकों के किसी भी एकात्मक परिवर्तन v के अनुसार अपरिवर्तनीय है

और विषम परिवर्तन के अनुसार भी

जहाँ ai सम्मिश्र संख्याएँ हैं और b एक वास्तविक संख्या है। चूंकि पहला परिवर्तन संचालको Li की ऑर्थोनोर्मैलिटी को नष्ट कर देता है (जब तक कि सभी γi समान न हों) और दूसरा परिवर्तन ट्रेसलेसनेस को नष्ट कर देता है। इसलिए लिंडब्लाड समीकरण के विकर्ण रूप के γi Li के मध्य विकृति तक गतिशीलता द्वारा विशिष्ट रूप से निर्धारित किया जाता है जब तक हमें उन्हें ऑर्थोनॉर्मल और ट्रेसलेस होने की आवश्यकता होती है।

हाइजेनबर्ग चित्र

इस प्रकार श्रोडिंगर चित्र में घनत्व आव्यूह के लिंडब्लैड-प्रकार के विकास को प्रत्येक क्वांटम अवलोकन योग्य X के लिए गति के निम्नलिखित (विकर्ण) समीकरण का उपयोग करके हेइज़ेनबर्ग चित्र में समकक्ष रूप से वर्णित किया जा सकता है:

समान समीकरण एरेनफेस्ट प्रमेय द्वारा दिए गए वेधशालाओं के अपेक्षित मूल्यों के समय विकास का वर्णन करता है। श्रोडिंगर चित्र लिंडब्लाड समीकरण की ट्रेस-संरक्षण प्रोपर्टी के अनुरूप, हाइजेनबर्ग चित्र समीकरण यूनिटल मानचित्र है, अर्थात यह पहचान संचालक को संरक्षित करता है।

भौतिक व्युत्पत्ति

लिंडब्लैड मास्टर समीकरण विभिन्न प्रकार के विवृत क्वांटम प्रणाली के विकास का वर्णन करता है, जैसे प्रणाली अशक्त रूप से मार्कोवियन जलाशय से जुड़ी हुई है।[1] ध्यान दें कि H समीकरण में प्रदर्शित होना आवश्यक रूप से प्रत्यक्ष प्रणाली हैमिल्टनियन के समान नहीं है, किन्तु इसमें प्रणाली-पर्यावरण इंटरैक्शन से उत्पन्न होने वाली प्रभावी एकात्मक गतिशीलता भी सम्मिलित हो सकती है।

इस प्रकार अनुमान व्युत्पत्ति, उदाहरण के लिए, जॉन प्रीस्किल के नोट्स में,[4] विवृत क्वांटम प्रणाली के अधिक सामान्य रूप से प्रारंभ होता है और मार्कोवियन धारणा बनाकर और छोटे समय में विस्तार करके इसे लिंडब्लैड रूप में परिवर्तित करता है। अधिक स्पष्ट रूप से प्रेरित मानक समाधान [5][6] प्रणाली और पर्यावरण दोनों पर हैमिल्टनियन कार्य से प्रारंभ होने वाले लिंडब्लैडियन की तीन सामान्य प्रकार की व्युत्पत्तियों को सम्मिलित किया गया है: अशक्त युग्मन सीमा (नीचे विस्तार से वर्णित), कम घनत्व सन्निकटन, और एकवचन युग्मन सीमा इनमें से प्रत्येक, पर्यावरण के सहसंबंध कार्यों के संबंध में विशिष्ट भौतिक धारणाओं पर निर्भर करता है। उदाहरण के लिए, अशक्त युग्मन सीमा व्युत्पत्ति में, कोई सामान्यतः मानता है कि (a) पर्यावरण के साथ प्रणाली के सहसंबंध निरंतर विकसित होते हैं, (b) प्रणाली क्षय के कारण पर्यावरण की उत्तेजनाएं तीव्रता से बढ़ती हैं, और (c) शब्द जो तीव्रता से दोलन कर रहे हैं जब तुलना की ब्याज की प्रणाली समयसीमा की उपेक्षा की जा सकती है। इन तीन सन्निकटनों को बोर्न कहा जाता है, मार्कोव, और घूर्णन तरंग, क्रमशः [7] अशक्त-युग्मन सीमा व्युत्पत्ति क्वांटम प्रणाली मानती है जिसमें स्वतंत्रता की डिग्री की सीमित संख्या होती है इस प्रकार जो स्वतंत्रता की डिग्री की अनंत संख्या वाले बाथ से जुड़ी होती है। प्रणाली और बाथ प्रत्येक में कुल हिल्बर्ट समष्टि के संबंधित उप-समष्टि पर कार्य करने वाले संचालक के संदर्भ में हैमिल्टनियन लिखा हुआ है। यह हैमिल्टनियन अयुग्मित प्रणाली और बाथ की आंतरिक गतिशीलता को नियंत्रित करते हैं। इस प्रकार तीसरा हैमिल्टनियन है जिसमें प्रणाली और बाथ संचालक के उत्पाद सम्मिलित हैं, इस प्रकार प्रणाली और बाथ को युग्मित किया जाता है। इस हैमिल्टनियन का सबसे सामान्य रूप है

इस प्रकार संपूर्ण प्रणाली की गतिशीलता को गति के लिउविल समीकरण, द्वारा वर्णित किया जा सकता है। स्वतंत्रता की अनंत कोटि वाले इस समीकरण को, बहुत विशेष स्थितियों को छोड़कर, विश्लेषणात्मक रूप से हल करना असंभव है। इसके अतिरिक्त, कुछ अनुमानों के अनुसार, स्वतंत्रता की बाथ डिग्री पर विचार करने की आवश्यकता नहीं है, और प्रणाली घनत्व आव्यूह, के संदर्भ में एक प्रभावी मास्टर समीकरण प्राप्त किया जा सकता है। एकात्मक परिवर्तन द्वारा परिभाषित इंटरेक्शन चित्र में जाकर समस्या का अधिक सरलता से विश्लेषण किया जा सकता है, जहां एक इच्छानुसार संचालक है और है। यह भी ध्यान दें कि संपूर्ण प्रणाली का कुल एकात्मक संचालिका है। यह पुष्टि करना प्रत्यक्ष है कि लिउविल समीकरण बन जाता है


जहां हैमिल्टनियन स्पष्ट रूप से समय पर निर्भर है। इसके अतिरिक्त, इंटरेक्शन चित्र के अनुसार, है, जहां इस समीकरण को देने के लिए प्रत्यक्ष एकीकृत किया जा सकता है

इस प्रकार के लिए इस अंतर्निहित समीकरण को एक स्पष्ट भिन्न-अभिन्न समीकरण प्राप्त करने के लिए वापस लिउविल समीकरण में प्रतिस्थापित किया जा सकता है

हम यह मानकर व्युत्पत्ति के साथ आगे बढ़ते हैं कि इंट्रैक्ट पर शुरू हुई है, और उस समय प्रणाली और बाथ के मध्य कोई संबंध नहीं है। इसका तात्पर्य यह है कि प्रारंभिक स्थिति के रूप में कारक योग्य है, जहां प्रारंभ में बाथ का घनत्व संचालक है।

उपरोक्त भिन्न-अभिन्न समीकरण उत्पन्न में से की स्वतंत्रता की डिग्री का पता लगाने से पता चलता है

यह समीकरण प्रणाली घनत्व आव्यूह की समय गतिशीलता के लिए स्पष्ट है किन्तु स्वतंत्रता की बाथ डिग्री की गतिशीलता के पूर्ण ज्ञान की आवश्यकता है। बोर्न सन्निकटन नामक सरलीकरण धारणा बाथ की विशालता और युग्मन की सापेक्ष अशक्त पर आधारित है, जिसका अर्थ है कि बाथ के लिए प्रणाली के युग्मन से बाथ के आइजेनस्टेट्स में महत्वपूर्ण परिवर्तन नहीं होना चाहिए। इस प्रकार इस स्थिति में पूर्ण घनत्व आव्यूह प्रत्येक समय के लिए के रूप में गुणनखंडनीय है। मास्टर समीकरण बनता है

इस प्रकार समीकरण अब स्वतंत्रता की डिग्री प्रणाली में स्पष्ट है, किन्तु इसे हल करना बहुत कठिन है। अंतिम धारणा बोर्न-मार्कोव सन्निकटन है कि घनत्व आव्यूह का समय व्युत्पन्न केवल इसकी वर्तमान स्थिति पर निर्भर करता है, न कि इसके अतीत पर यह धारणा तीव्र बाथ गतिशीलता के अनुसार मान्य है, जिसमें बाथ के अन्दर सहसंबंध बहुत तीव्रता से विलुप्त हो जाते हैं, और समीकरण के दाईं ओर को प्रतिस्थापित करने के समान होता है।

यदि अंतःक्रिया को हैमिल्टनियन रूप माना जाता है

इस प्रकार प्रणाली संचालक और बाथ संचालक के लिए फिर मास्टर समीकरण बन जाता है

जिसे इस प्रकार विस्तारित किया जा सकता है

इस प्रकार आपेक्षित मान स्वतंत्रता की बाथ डिग्री के संबंध में हैं। इन सहसंबंधों के तेजी से क्षय को मानते हुए (आदर्श रूप से ) उपरोक्त रूप में लिंडब्लैड सुपरऑपरेटर L प्राप्त किया गया है।

उदाहरण

एक जंप संचालक और कोई एकात्मक विकास नहीं होने के लिए लिंडब्लाड सुपरऑपरेटर घनत्व आव्यूह पर कार्य करता है

ऐसा शब्द नियमित रूप से लिंडब्लाड समीकरण में पाया जाता है जैसा कि क्वांटम प्रकाशिकी में उपयोग किया जाता है, जहां यह जलाशय से फोटॉन के अवशोषण या उत्सर्जन को व्यक्त कर सकता है। यदि कोई अवशोषण और उत्सर्जन दोनों चाहता है, तो उसे प्रत्येक के लिए जंप संचालक की आवश्यकता होगी। इस प्रकार यह सबसे सामान्य लिंडब्लाड समीकरण की ओर ले जाता है जो क्वांटम हार्मोनिक ऑसिलेटर (उदाहरण के लिए फैब्री-पेरोट इंटरफेरोमीटर या फैब्री-पेरोट कैविटी) के डंपिंग का वर्णन करता है, जो जंप संचालक के साथ तापीय जलाशय से जुड़ा होता है।

यहां ऑसिलेटर को जलाशय में उत्तेजनाओं की औसत संख्या है और γ क्षय दर है। यदि हम आवृत्ति के साथ क्वांटम हार्मोनिक ऑसिलेटर हैमिल्टनियन द्वारा उत्पन्न अतिरिक्त एकात्मक विकास भी जोड़ते हैं, तो हम प्राप्त होता हैं

इस प्रकार अतिरिक्त लिंडब्लैड संचालक को डिफ़ेज़िंग और कंपन संबंधी रिलेक्स के विभिन्न रूपों को मॉडल करने के लिए सम्मिलित किया जा सकता है। इन विधियों को ग्रिड-आधारित घनत्व आव्यूह प्रसार विधियों में सम्मिलित किया गया है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 Breuer, Heinz-Peter; Petruccione, F. (2002). The Theory of Open Quantum Systems. Oxford University Press. ISBN 978-0-1985-2063-4.
  2. Weinberg, Steven (2014). "राज्य वैक्टर के बिना क्वांटम यांत्रिकी". Phys. Rev. A. 90 (4): 042102. arXiv:1405.3483. Bibcode:2014PhRvA..90d2102W. doi:10.1103/PhysRevA.90.042102. S2CID 53990012.
  3. Manzano, Daniel (2020). "लिंडब्लैड मास्टर समीकरण का संक्षिप्त परिचय". AIP Advances. 10 (2): 025106. arXiv:1906.04478. Bibcode:2020AIPA...10b5106M. doi:10.1063/1.5115323. S2CID 184487806.
  4. Preskill, John. Lecture notes on Quantum Computation, Ph219/CS219 (PDF). Archived from the original (PDF) on 2020-06-23.
  5. Alicki, Robert; Lendi, Karl (2007). Quantum Dynamical Semigroups and Applications. Lecture Notes in Physics. Vol. 717. Springer. doi:10.1007/3-540-70861-8. ISBN 978-3-540-70860-5.
  6. Carmichael, Howard. An Open Systems Approach to Quantum Optics. Springer Verlag, 1991
  7. This paragraph was adapted from Albert, Victor V. (2018). "Lindbladians with multiple steady states: theory and applications". arXiv:1802.00010 [quant-ph].
  • Tarasov, Vasily E. (2008). Quantum Mechanics of Non-Hamiltonian and Dissipative Systems. Amsterdam, Boston, London, New York: Elsevier Science. ISBN 978-0-0805-5971-1.
  • Pearle, P. (2012). "Simple derivation of the Lindblad equation". European Journal of Physics, 33(4), 805.


बाहरी संबंध