लैग्रेंज व्युत्क्रम प्रमेय

From alpha
Jump to navigation Jump to search

गणितीय विश्लेषण में, लैग्रेंज व्युत्क्रम प्रमेय, जिसे लैग्रेंज-बर्मन सूत्र के रूप में भी जाना जाता है, विश्लेषणात्मक फलन एक व्युत्क्रम फलन के टेलरश्रेणी मे विस्तार करता है।

कथन

मान लीजिए कि z को एक समीकरण द्वारा w के फलन के रूप में परिभाषित किया गया है

जहाँ f एक बिंदु पर विश्लेषणात्मक होता है a और तब w के लिए समीकरण को अंतर्वर्त करना या हल करना संभव होता है, इसे इस रूप में व्यक्त करना एक घात श्रेणी द्वारा दिया गया[1]

जहाँ

प्रमेय बताता है है कि इस श्रृंखला में अभिसरण की एक गैर-शून्य त्रिज्या होता है, अर्थात, निकटतम में z के एक विश्लेषणात्मक कार्य का प्रतिनिधित्व करता है इसे श्रृंखला का प्रत्यावर्तन भी कहा जाता है।

यदि विश्लेषणात्मकता के बारे में प्रमाण छोड़ दिए जाते हैं, तो सूत्र औपचारिक घात श्रेणी के लिए भी मान्य होते है और इसे विभिन्न विधियों से सामान्यीकृत किया जा सकता है: इसे कई चरों के फलनों के लिए तैयार किया जा सकता है; इसे किसी भी विश्लेषणात्मक फलन F के लिए F(g(z)) तैयार फॉर्मूला प्रदान करने के लिए बढ़ाया जा सकता है; और इसे स्थिति में सामान्यीकृत किया जा सकता है जहां व्युत्क्रम g एक बहुमूल्यवान फलन होता है।

इस प्रमेय को जोसेफ लुई लैग्रेंज ने प्रमाणित किया था[2] और हंस हेनरिक बर्मन द्वारा दोनों 18वीं सदी के अंत में,[3][4][5] सामान्यीकृत किया गया था। जटिल विश्लेषण और समोच्च एकीकरण का उपयोग करके इसमे एक सीधी व्युत्पत्ति होती है;[6] जटिल औपचारिक घात श्रेणी संस्करण बहुपदो के सूत्र को जानने का परिणाम है, इसलिए विश्लेषणात्मक फलनों के सिद्धांत को लागू किया जा सकता है। वास्तव में, विश्लेषणात्मक फलन सिद्धांत की मशीनरी इस प्रमाण में केवल औपचारिक विधि से प्रवेश करती है, जिसमें वास्तव में जो आवश्यक है वह औपचारिक अवशेषों की कुछ गुण की आवश्यकता होती है, और और एक अधिक प्रत्यक्ष औपचारिक प्रमाण उपलब्ध होते है।

यदि f औपचारिक घात श्रेणी है, तो उपरोक्त सूत्र श्रृंखला f के गुणांकों के संदर्भ में सीधे संरचनागत व्युत्क्रम श्रृंखला g के गुणांक नहीं देता है। यदि कोई औपचारिक घात श्रेणी में फलन f और g को व्यक्त कर सकता है।

f0 = 0 और f1 ≠ 0 के साथ , तो व्युत्क्रम गुणांक का एक स्पष्ट रूप बेल बहुपद के पद में दिया जा सकता है:[7]

जहाँ

भाज्य संबंधी बढ़ता है

जब f1 = 1, अंतिम सूत्र की व्याख्या असोसिएहेड्रॉन के फलकों के संदर्भ में की जा सकती है [8]

जहां कहाँ प्रत्येक फलक के लिए असोसिएहेड्रॉन का

उदाहरण

उदाहरण के लिए, डिग्री p का बीजगणितीय समीकरण

फलन f(x) = xxp के लिए लैग्रेंज व्युत्क्रम सूत्र के माध्यम से x के लिए हल किया जा सकता है, जिसके परिणामस्वरूप एक औपचारिक श्रृंखला समाधान प्राप्त होता है

अभिसरण परीक्षणों द्वारा, यह श्रृंखला वास्तव में अभिसरण के लिए है जो सबसे बड़ी डिस्क भी है जिसमें f के स्थानीय व्युत्क्रम को परिभाषित किया जा सकता है।

प्रमाण का रेखाचित्र

मान लीजिए फिर हम गणना कर सकते हैं

यदि हम ज्यामितीय श्रृंखला का उपयोग करके एकीकृत का विस्तार करते हैं तो हमें प्राप्त होता है

जहां अंतिम चरण में हमने इस तथ्य का उपयोग किया था मे एक साधारण शून्य होता है

अंततः हम एकीकरण कर सकते हैं को ध्यान में रखते हुए

सारांश सूचकांक को पुनः परिभाषित करने पर हमें बताया गया सूत्र प्राप्त होता है।

अनुप्रयोग

लैग्रेंज-बर्मन सूत्र

लैग्रेंज व्युत्क्रम प्रमेय का एक विशेष स्थिति होती है जिसका उपयोग साहचर्य में किया जाता है और जब लागू होता है कुछ विश्लेषणात्मक के लिए साथ लेना प्राप्त करने के लिए फिर व्युत्क्रम के लिए (संतुष्टि देने वाला ), अपने पास

जिसे वैकल्पिक रूप से इस प्रकार लिखा जा सकता है

जहाँ एक ऑपरेटर है जो का गुणांक निकालता है के एक समारोह की टेलर श्रृंखला में w.

सूत्र के सामान्यीकरण को लैग्रेंज-बर्मन सूत्र के रूप में जाना जाता है:

कहाँ H एक मनमाना विश्लेषणात्मक कार्य है।

कभी-कभी, व्युत्पन्न H(w) काफी जटिल हो सकता है. सूत्र का एक सरल संस्करण प्रतिस्थापित करता है H(w) साथ H(w)(1 − φ(w)/φ(w)) पाने के

कौन सम्मलित है φ(w) के अतिरिक्त H(w) होता है

लैम्बर्ट डब्ल्यू फलन

लैंबर्ट W फलन है जो कि समीकरण द्वारा स्पष्ट रूप से परिभाषित है

हम टेलर श्रृंखला की गणना करने के लिए प्रमेय का उपयोग कर सकते हैं पर हम लेते हैं और उसे पहचानते हुए

यह देता है

इस श्रृंखला के अभिसरण की त्रिज्या है (लैंबर्ट फलन की मुख्य उपखंड देते हुए)।

एक श्रृंखला जो बड़े पैमाने पर z के लिए अभिसरण करती है (चूँकि सभी z के लिए नहीं) श्रृंखला व्युत्क्रम द्वारा भी प्राप्त की जा सकती है। फलन समीकरण को संतुष्ट करता है

जब एक घात श्रेणी में में विस्तारित और अंतर्वर्त किया जा सकता है।[9] यह एक श्रृंखला देता है

को प्रतिस्थापित करके गणना की जा सकती है के लिए z उपरोक्त शृंखला में होता है। उदाहरण के लिए, प्रतिस्थापित करना −1 के लिए z का मान देता है

बाइनरी ट्री

सेट पर विचार करें[10] सेट बिना लेबल वाले बाइनरी ट्री की संख्या का एक तत्व या तो शून्य आकार का एक पत्ता है, या दो उपतरु वाला एक मूल बिंदु द्वारा निरूपित होता है पर बाइनरी ट्री की संख्या बिंदु होता है

वर्गमूल को हटाने से एक बाइनरी ट्री छोटे आकार के दो ट्री में विभाजित हो जाता है। इससे उत्पादक फलन पर कार्यात्मक समीकरण प्राप्त होता है

, इस प्रकार है प्रमेय को साथ में लागू करना की उत्पत्ति करता है

इससे पता चलता है कि nवां कैटलन संख्या होती है

अभिन्नों का स्पर्शोन्मुख सन्निकटन

लाप्लास-एर्डेली प्रमेय में जो लाप्लास-प्रकार के पूर्ण सांख्यिक के लिए उपगामी सन्निकटन देता है, फलन व्युत्क्रम को एक महत्वपूर्ण रूप में लिया जाता है।

यह भी देखें

  • फ़ा डि ब्रूनो का सूत्र उन दो श्रृंखलाओं के गुणांकों के संदर्भ में दो औपचारिक घात श्रेणीओं की संरचना के गुणांक देता है। समान रूप से, यह एक समग्र फलन के nवें अवकलज के लिए एक सूत्र है।
  • किसी अन्य प्रमेय के लिए लैग्रेंज प्रत्यावर्तन प्रमेय को कभी-कभी व्युत्क्रम प्रमेय भी कहा जाता है
  • औपचारिक घात श्रेणी लैग्रेंज व्युत्क्रम सूत्र

संदर्भ

  1. M. Abramowitz; I. A. Stegun, eds. (1972). "3.6.6. Lagrange's Expansion". सूत्रों, ग्राफ़ और गणितीय तालिकाओं के साथ गणितीय कार्यों की पुस्तिका. New York: Dover. p. 14.
  2. Lagrange, Joseph-Louis (1770). "Nouvelle méthode pour résoudre les équations littérales par le moyen des séries". Histoire de l'Académie Royale des Sciences et Belles-Lettres de Berlin: 251–326. https://archive.org/details/uvresdelagrange18natigoog/page/n13 (Note: Although Lagrange submitted this article in 1768, it was not published until 1770.)
  3. Bürmann, Hans Heinrich, "Essai de calcul fonctionnaire aux constantes ad-libitum," submitted in 1796 to the Institut National de France. For a summary of this article, see: Hindenburg, Carl Friedrich, ed. (1798). "Versuch einer vereinfachten Analysis; ein Auszug eines Auszuges von Herrn Bürmann" [Attempt at a simplified analysis; an extract of an abridgement by Mr. Bürmann]. Archiv der reinen und angewandten Mathematik [Archive of pure and applied mathematics]. Vol. 2. Leipzig, Germany: Schäferischen Buchhandlung. pp. 495–499.
  4. Bürmann, Hans Heinrich, "Formules du développement, de retour et d'integration," submitted to the Institut National de France. Bürmann's manuscript survives in the archives of the École Nationale des Ponts et Chaussées [National School of Bridges and Roads] in Paris. (See ms. 1715.)
  5. A report on Bürmann's theorem by Joseph-Louis Lagrange and Adrien-Marie Legendre appears in: "Rapport sur deux mémoires d'analyse du professeur Burmann," Mémoires de l'Institut National des Sciences et Arts: Sciences Mathématiques et Physiques, vol. 2, pages 13–17 (1799).
  6. E. T. Whittaker and G. N. Watson. A Course of Modern Analysis. Cambridge University Press; 4th edition (January 2, 1927), pp. 129–130
  7. Eqn (11.43), p. 437, C.A. Charalambides, Enumerative Combinatorics, Chapman & Hall / CRC, 2002
  8. Aguiar, Marcelo; Ardila, Federico (2017). "हॉपफ मोनोइड्स और सामान्यीकृत परमुटाहेड्रा". arXiv:1709.07504 [math.CO].
  9. Corless, Robert M.; Jeffrey, David J.; Knuth, Donald E. (July 1997). "लैम्बर्ट डब्ल्यू फ़ंक्शन के लिए श्रृंखला का एक क्रम". Proceedings of the 1997 international symposium on Symbolic and algebraic computation. pp. 197–204.
  10. Harris, John; Hirst, Jeffry L.; Mossinghoff, Michael (2008). कॉम्बिनेटरिक्स और ग्राफ़ सिद्धांत. Springer. p. 185-189. ISBN 978-0387797113.


बाहरी संबंध