उच्च परिभाषा टेलीविजन

From alpha
Jump to navigation Jump to search

हाई-डेफिनिशन टेलीविजन (एचडी या एचडीटीवी) एक टेलीविजन प्रणाली का वर्णन करता है जो पिछली पीढ़ी की प्रौद्योगिकियों की तुलना में काफी अधिक छवि रिज़ॉल्यूशन प्रदान करता है। इस शब्द का प्रयोग 1936 से किया जा रहा है;[1]हाल के दिनों में, यह मानक-परिभाषा टेलीविजन (एसडीटीवी) के बाद की पीढ़ी को संदर्भित करता है, जिसे अक्सर एचडीटीवी या एचडी-टीवी के रूप में संक्षिप्त किया जाता है। यह अधिकांश प्रसारणों में उपयोग किया जाने वाला वर्तमान वास्तविक मानक वीडियो प्रारूप है: स्थलीय टेलीविजन, केबल टेलीविज़न , उपग्रह टेलीविजन और ब्लू - रे डिस्क

प्रारूप

एचडीटीवी को विभिन्न स्वरूपों में प्रसारित किया जा सकता है:

  • 720p (1280 क्षैतिज पिक्सेल × 720 पंक्तियाँ): 921,600 पिक्सेल
  • 1080i (1920×1080) इंटरलेस्ड वीडियो स्कैन: 1,036,800 पिक्सल (~1.04 एमपी)।
  • 1080पी (1920×1080) प्रोग्रेसिव स्कैन: 2,073,600 पिक्सल (~2.07 एमपी)।
    • कुछ देश गैर-मानक सीईए रिज़ॉल्यूशन का भी उपयोग करते हैं, जैसे 1440×1080i: 777,600 पिक्सेल (~0.78 MP) प्रति फ़ील्ड या 1,555,200 पिक्सेल (~1.56 MP) प्रति फ़्रेम

प्रति फ्रेम दो मेगापिक्सेल पर प्रसारित होने पर, एचडीटीवी एसडी (मानक-परिभाषा टेलीविजन) के रूप में लगभग पांच गुना अधिक पिक्सेल प्रदान करता है। बढ़ा हुआ रिज़ॉल्यूशन एक स्पष्ट, अधिक विस्तृत चित्र प्रदान करता है। इसके अलावा, प्रगतिशील स्कैन और उच्च फ्रेम दर के परिणामस्वरूप कम झिलमिलाहट वाली तस्वीर और तेज गति का बेहतर प्रतिपादन होता है।[2] एचडीटीवी जैसा कि आज जाना जाता है, ने पहली बार 1989 में जापान में एकाधिक उप-Nyquist नमूनाकरण एन्कोडिंग एनालॉग सिस्टम के तहत आधिकारिक प्रसारण शुरू किया था।[3] एचडीटीवी को 2000 के दशक के अंत में दुनिया भर में व्यापक रूप से अपनाया गया था।[4]


इतिहास

हाई डेफिनिशन शब्द एक बार अगस्त 1936 से शुरू होने वाली टेलीविजन प्रणालियों की एक श्रृंखला का वर्णन करता है; हालाँकि, ये प्रणालियाँ केवल उच्च परिभाषा थीं जब पहले की प्रणालियों की तुलना में जो यांत्रिक प्रणालियों पर आधारित थीं, जो कि 30 से कम थीं संकल्प की पंक्तियाँ। वास्तविक एचडीटीवी बनाने के लिए कंपनियों और राष्ट्रों के बीच चल रही प्रतिस्पर्धा पूरी 20वीं शताब्दी तक फैली हुई थी, क्योंकि प्रत्येक नई प्रणाली पिछली प्रणाली की तुलना में उच्च परिभाषा बन गई थी। 2010 के दशक में, यह दौड़ 4K रिज़ॉल्यूशन, 5K रिज़ॉल्यूशन और 8K रिज़ॉल्यूशन सिस्टम के साथ जारी रही।

ब्रिटिश हाई-डेफिनिशन टीवी सेवा ने अगस्त 1936 में परीक्षण शुरू किया और 2 नवंबर 1936 को एक नियमित सेवा दोनों (यांत्रिक) बेयर्ड 240 लाइन अनुक्रमिक स्कैन (बाद में गलत तरीके से 'प्रगतिशील' नाम दिया गया) और (इलेक्ट्रॉनिक) मार्कोनी-ईएमआई 405 का उपयोग करके शुरू की। लाइन इंटरलेस्ड सिस्टम। बेयर्ड सिस्टम को फरवरी 1937 में बंद कर दिया गया था।[1] 1938 में फ़्रांस ने अपनी 441 लाइन | 441-लाइन प्रणाली का अनुसरण किया, जिसके भिन्न रूपों का उपयोग कई अन्य देशों द्वारा भी किया गया। US NTSC 525-लाइन प्रणाली 1941 में शामिल हुई। 1949 में फ्रांस ने 819 लाइनों पर एक और भी उच्च-रिज़ॉल्यूशन मानक पेश किया, एक प्रणाली जिसे आज के मानकों से भी उच्च परिभाषा होना चाहिए था, लेकिन केवल मोनोक्रोम था और उस समय की तकनीकी सीमाओं को रोका गया था। यह उस परिभाषा को प्राप्त करने से है जिसके लिए इसे सक्षम होना चाहिए था। इन सभी प्रणालियों में 240-लाइन प्रणाली को छोड़कर इंटरलेस्ड वीडियो और 4:3 पहलू अनुपात (छवि) का उपयोग किया गया था जो प्रगतिशील था (वास्तव में उस समय तकनीकी रूप से सही शब्द अनुक्रमिक द्वारा वर्णित) और 405-लाइन प्रणाली जो 5 के रूप में शुरू हुई थी: 4 और बाद में बदलकर 4:3 कर दिया। 405-लाइन सिस्टम ने (उस समय) अपने 25 Hz फ्रेम दर के साथ 240-लाइन की झिलमिलाहट की समस्या को दूर करने के लिए इंटरलेस्ड स्कैनिंग के क्रांतिकारी विचार को अपनाया। 240-लाइन सिस्टम अपनी फ्रेम दर को दोगुना कर सकता था लेकिन इसका मतलब यह होगा कि प्रेषित सिग्नल बैंडविड्थ में दोगुना हो गया होगा, एक अस्वीकार्य विकल्प क्योंकि वीडियो बेसबैंड बैंडविड्थ को 3 मेगाहर्ट्ज से अधिक नहीं होना आवश्यक था।

1953 में पहली बार यूएस एनटीएससी रंग प्रणाली के साथ रंग प्रसारण समान लाइन काउंट पर शुरू हुआ, जो पहले के मोनोक्रोम सिस्टम के साथ संगत था और इसलिए प्रति फ्रेम समान 525 लाइनें थीं। 1960 के दशक तक यूरोपीय मानकों का दोस्त न नहीं किया गया, जब मोनोक्रोम 625-लाइन प्रसारण में PAL और SECAM रंग प्रणालियों को जोड़ा गया।

एनएचके (जापान ब्रॉडकास्टिंग कॉरपोरेशन) ने टोक्यो ओलंपिक के बाद 1964 में पांच मानव इंद्रियों के साथ वीडियो और ध्वनि की बातचीत के मौलिक तंत्र को अनलॉक करने के लिए अनुसंधान करना शुरू किया। एनएचके एक एचडीटीवी सिस्टम बनाने के लिए तैयार है, जो एनटीएससी के पहले डब किए गए एचडीटीवी की तुलना में व्यक्तिपरक परीक्षणों में बहुत अधिक स्कोरिंग करता है। 1972 में बनाए गए इस नए सिस्टम, NHK कलर में 1125 लाइनें, 5:3 का आस्पेक्ट रेश्यो और 60 Hz रिफ्रेश रेट शामिल हैं। चार्ल्स जिन्सबर्ग की अध्यक्षता में सोसाइटी ऑफ़ मोशन पिक्चर एंड टेलीविज़न इंजीनियर्स (एसएमपीटीई) अंतर्राष्ट्रीय थिएटर में एचडीटीवी प्रौद्योगिकी के लिए परीक्षण और अध्ययन प्राधिकरण बन गया। एसएमपीटीई हर कल्पनीय परिप्रेक्ष्य से विभिन्न कंपनियों से एचडीटीवी सिस्टम का परीक्षण करेगा, लेकिन विभिन्न स्वरूपों के संयोजन की समस्या ने कई वर्षों तक प्रौद्योगिकी को प्रभावित किया।

1970 के दशक के अंत में एसएमपीटीई द्वारा चार प्रमुख एचडीटीवी सिस्टम का परीक्षण किया गया था, और 1979 में एक एसएमपीटीई अध्ययन समूह ने हाई डेफिनिशन टेलीविजन सिस्टम का एक अध्ययन जारी किया:

  • EIA मोनोक्रोम: 4:3 पक्षानुपात, 1023 लाइनें, 60 Hz
  • एनएचके रंग: 5:3 पहलू अनुपात, 1125 लाइनें, 60 हर्ट्ज
  • एनएचके मोनोक्रोम: 4:3 पक्षानुपात, 2125 लाइनें, 50 हर्ट्ज
  • बीबीसी रंग: 8:3 पहलू अनुपात, 1501 लाइनें, 60 हर्ट्ज[5]

2000 के दशक के मध्य से लेकर अंत तक डिजिटल वीडियो प्रसारण (DVB) वाइडस्क्रीन HDTV ट्रांसमिशन मोड को औपचारिक रूप से अपनाने के बाद से; 525-लाइन NTSC (और PAL-M) सिस्टम, साथ ही साथ यूरोपीय 625-लाइन PAL और SECAM सिस्टम को अब मानक परिभाषा टेलीविजन सिस्टम माना जाता है।

एनालॉग सिस्टम

शुरुआती एचडीटीवी प्रसारण में एनालॉग टेलीविजन तकनीक का इस्तेमाल किया जाता था, लेकिन आज यह डिजिटल टेलीविजन प्रसारित होता है और वीडियो संपीड़न का उपयोग करता है।

1949 में, फ्रांस ने 819 लाइनों की प्रणाली (737 सक्रिय लाइनों के साथ) के साथ अपना प्रसारण शुरू किया। यह प्रणाली केवल मोनोक्रोम थी और पहले फ्रांसीसी टीवी चैनल के लिए केवल वीएचएफ पर इसका इस्तेमाल किया गया था। 1983 में इसे बंद कर दिया गया था।

1958 में, सोवियत संघ ने ट्रांसफॉर्मर विकसित किया (Russian: Трансформатор, जिसका अर्थ है ट्रांसफॉर्मर), सैन्य कमांड के लिए टेलीकांफ्रेंसिंग प्रदान करने के उद्देश्य से संकल्प की 1,125 पंक्तियों से बनी एक छवि बनाने में सक्षम पहली उच्च-रिज़ॉल्यूशन (परिभाषा) टेलीविजन प्रणाली। यह एक शोध परियोजना थी और सिस्टम को कभी भी सैन्य या उपभोक्ता प्रसारण द्वारा तैनात नहीं किया गया था।[6] 1986 में, यूरोपीय समुदाय ने HD-MAC, 1,152 लाइनों वाला एक एनालॉग HDTV सिस्टम प्रस्तावित किया। बार्सिलोना में 1992 के ग्रीष्मकालीन ओलंपिक के लिए एक सार्वजनिक प्रदर्शन हुआ। हालांकि HD-MAC को 1993 में समाप्त कर दिया गया और डिजिटल वीडियो प्रसारण (DVB) प्रोजेक्ट का गठन किया गया, जो एक डिजिटल HDTV मानक के विकास की उम्मीद करेगा।[7]


जापान

1979 में, जापानी सार्वजनिक प्रसारक एनएचके ने पहली बार 5:3 डिस्प्ले पहलू अनुपात के साथ उपभोक्ता हाई-डेफिनिशन टेलीविजन विकसित किया।[8] सिगनल को एनकोड करने के लिए मल्टीपल सब-निक्विस्ट सैंपलिंग एन्कोडिंग (एमयूएसई) के बाद हाई-विजन या एमयूएसई के रूप में जाना जाने वाला सिस्टम, मौजूदा एनटीएससी सिस्टम की बैंडविड्थ के बारे में दो बार आवश्यक है, लेकिन लगभग चार गुना रिज़ॉल्यूशन (1035i/1125 लाइन) प्रदान करता है। 1981 में, संयुक्त राज्य अमेरिका में पहली बार MUSE प्रणाली का प्रदर्शन जापानी प्रणाली के समान 5:3 पहलू अनुपात का उपयोग करके किया गया था।[9] वाशिंगटन में एमयूएसई के एक प्रदर्शन का दौरा करने पर, अमेरिकी राष्ट्रपति रोनाल्ड रीगन प्रभावित हुए और आधिकारिक तौर पर इसे अमेरिका में एचडीटीवी पेश करने के लिए राष्ट्रीय हित का विषय घोषित किया।[10] एनएचके ने 1984 के ग्रीष्मकालीन ओलंपिक को हाई-विज़न कैमरे से रिकॉर्ड किया, जिसका वजन 40 किलोग्राम था।[11] सैटेलाइट परीक्षण प्रसारण 4 जून 1989 को शुरू हुआ, जो दुनिया का पहला दैनिक उच्च-परिभाषा कार्यक्रम था,[12] 25 नवंबर, 1991 या हाई-विजन डे से शुरू होने वाले नियमित परीक्षण के साथ – इसके 1,125-लाइनों के रिज़ॉल्यूशन को संदर्भित करने के लिए दिनांकित।[13] प्रसारण उपग्रह (जापानी)जापानी) -9ch का नियमित प्रसारण 25 नवंबर, 1994 को शुरू हुआ, जिसमें वाणिज्यिक और एनएचके प्रोग्रामिंग शामिल थे।

जापानी एमयूएसई प्रणाली सहित कई प्रणालियों को अमेरिका के लिए नए मानक के रूप में प्रस्तावित किया गया था, लेकिन सभी को उनकी उच्च बैंडविड्थ आवश्यकताओं के कारण एफसीसी द्वारा अस्वीकार कर दिया गया था। इस समय टेलीविजन चैनलों की संख्या तेजी से बढ़ रही थी और बैंडविड्थ पहले से ही एक समस्या थी। एक नए मानक को अधिक कुशल होना था, मौजूदा एनटीएससी की तुलना में एचडीटीवी के लिए कम बैंडविड्थ की आवश्यकता थी।

एनालॉग एचडी सिस्टम में कमी

1990 के दशक में एनालॉग एचडीटीवी के सीमित मानकीकरण ने वैश्विक एचडीटीवी अपनाने का नेतृत्व नहीं किया क्योंकि उस समय तकनीकी और आर्थिक बाधाओं ने एचडीटीवी को सामान्य टेलीविजन से अधिक बैंडविड्थ का उपयोग करने की अनुमति नहीं दी थी। एनएचके के एमयूएसई जैसे शुरुआती एचडीटीवी व्यावसायिक प्रयोगों के लिए मानक-परिभाषा प्रसारण की बैंडविड्थ की चार गुना से अधिक की आवश्यकता होती है। एसडीटीवी की बैंडविड्थ को लगभग दोगुना करने के लिए एनालॉग एचडीटीवी को कम करने के प्रयासों के बावजूद, ये टेलीविजन प्रारूप अभी भी केवल उपग्रह द्वारा वितरण योग्य थे। यूरोप में भी, HD-MAC मानक को तकनीकी रूप से व्यवहार्य नहीं माना जाता था।[14][15] इसके अलावा, एचडीटीवी (सोनी एचडीवीएस) के शुरुआती वर्षों में एचडीटीवी सिग्नल की रिकॉर्डिंग और पुनरुत्पादन एक महत्वपूर्ण तकनीकी चुनौती थी। एनालॉग एचडीटीवी के सफल सार्वजनिक प्रसारण के साथ जापान एकमात्र देश बना रहा, जिसमें सात प्रसारकों ने एक ही चैनल साझा किया।[citation needed]

हालाँकि, 25 नवंबर, 1991 को लॉन्च होने पर Hi-Vision/MUSE सिस्टम को भी व्यावसायिक मुद्दों का सामना करना पड़ा। उत्साही 1.32 मिलियन अनुमान के बजाय उस दिन तक केवल 2,000 एचडीटीवी सेट बेचे गए थे। हाई-विजन सेट बहुत महंगे थे, प्रत्येक यूएस $ 30,000 तक, जिसने इसके कम उपभोक्ता अनुकूलन में योगदान दिया।[16] क्रिसमस के समय जारी एनईसी से एक हाई-विजन वीसीआर 115,000 अमेरिकी डॉलर में बिक गया। इसके अलावा, संयुक्त राज्य अमेरिका ने Hi-Vision/MUSE को एक पुरानी प्रणाली के रूप में देखा और पहले ही यह स्पष्ट कर दिया था कि वह एक पूर्ण-डिजिटल प्रणाली विकसित करेगा।[17] विशेषज्ञों का मानना ​​था कि 1992 में वाणिज्यिक हाई-विजन प्रणाली को 1990 के बाद से यू.एस. में विकसित डिजिटल तकनीक ने पहले ही ग्रहण कर लिया था। यह तकनीकी प्रभुत्व के मामले में जापानियों के खिलाफ एक अमेरिकी जीत थी।[18] 1993 के मध्य तक रिसीवर्स की कीमतें अभी भी 1.5 मिलियन अगर (US$15,000) जितनी अधिक थीं।[19] 23 फरवरी, 1994 को, जापान में एक शीर्ष प्रसारण प्रशासक ने अपने एनालॉग-आधारित एचडीटीवी सिस्टम की विफलता को स्वीकार करते हुए कहा कि यू.एस. डिजिटल प्रारूप विश्वव्यापी मानक होने की अधिक संभावना होगी।[20] हालांकि इस घोषणा ने ब्रॉडकास्टरों और इलेक्ट्रॉनिक कंपनियों के गुस्से का विरोध किया, जिन्होंने एनालॉग सिस्टम में भारी निवेश किया था। परिणामस्वरूप, उन्होंने अगले दिन यह कहते हुए अपना बयान वापस ले लिया कि सरकार हाई-विजन/एमयूएसई को बढ़ावा देना जारी रखेगी।[21] उस वर्ष एनएचके ने अमेरिका और यूरोप तक अपनी पकड़ बनाने के प्रयास में डिजिटल टेलीविजन का विकास शुरू किया। इसका परिणाम आईएसडीबी प्रारूप में हुआ।[22] जापान ने दिसंबर 2000 में डिजिटल उपग्रह और एचडीटीवी प्रसारण शुरू किया।[11]


डिजिटल संपीड़न का उदय

असम्पीडित वीडियो के साथ हाई-डेफिनिशन डिजिटल टेलीविजन संभव नहीं था, जिसके लिए 1 से अधिक बैंडविड्थ (कंप्यूटिंग) की आवश्यकता होती है{{nbsp}स्टूडियो-गुणवत्ता वाले HD डिजिटल वीडियो के लिए Gbit/s।[23][24] असतत कोसाइन परिवर्तन (डीसीटी) वीडियो संपीड़न के विकास से डिजिटल एचडीटीवी संभव हो गया था।[25][23]DCT कोडिंग एक हानिपूर्ण संपीड़न छवि संपीड़न तकनीक है जिसे पहली बार 1972 में N. अहमद द्वारा प्रस्तावित किया गया था,[26] और बाद में 1988 से H.26x प्रारूपों और 1993 के बाद से MPEG प्रारूपों जैसे वीडियो कोडिंग मानकों के लिए गति-क्षतिपूर्ति DCT एल्गोरिथम में रूपांतरित किया गया।[27][28] मोशन-मुआवजा DCT संपीड़न डिजिटल टीवी सिग्नल के लिए आवश्यक बैंडविड्थ की मात्रा को काफी कम कर देता है।[23][29] 1991 तक, इसने नियर-स्टूडियो-क्वालिटी एचडीटीवी ट्रांसमिशन के लिए 8:1 से 14:1 तक डेटा संपीड़न अनुपात हासिल कर लिया था, जो 70 तक कम हो गया था।–140 एमबिट/से.[23]1988 और 1991 के बीच, व्यावहारिक डिजिटल एचडीटीवी के विकास को सक्षम करते हुए, डीसीटी वीडियो संपीड़न को एचडीटीवी कार्यान्वयन के लिए वीडियो कोडिंग मानक के रूप में व्यापक रूप से अपनाया गया था।[23][25][30] गतिशील रैंडम एक्सेस मेमोरी (DRAM) को फ्रेम बफर सेमीकंडक्टर मेमोरी के रूप में भी अपनाया गया था, DRAM सेमीकंडक्टर उद्योग के निर्माण में वृद्धि और एचडीटीवी के व्यावसायीकरण के लिए महत्वपूर्ण कीमतों को कम करने के साथ।[30]

1972 से, अंतर्राष्ट्रीय दूरसंचार संघ का रेडियो दूरसंचार क्षेत्र (ITU-R) एनालॉग एचडीटीवी के लिए वैश्विक सिफारिश बनाने पर काम कर रहा था। हालाँकि, ये सिफारिशें उन प्रसारण बैंडों में फिट नहीं हुईं, जो घरेलू उपयोगकर्ताओं तक पहुँच सकते थे। 1993 में MPEG-1 के मानकीकरण ने अनुशंसाओं की स्वीकृति Rec. 709|आईटीयू-आर बीटी.709।[31] इन मानकों की प्रत्याशा में, डिजिटल वीडियो ब्रॉडकास्टिंग (DVB) संगठन का गठन किया गया। यह प्रसारकों, उपभोक्ता इलेक्ट्रॉनिक्स निर्माताओं और नियामक निकायों का गठजोड़ था। डीवीबी विकसित करता है और विशिष्टताओं पर सहमत होता है जो औपचारिक रूप से ईटीएसआई द्वारा मानकीकृत हैं।[32] DVB ने DVB-S डिजिटल सैटेलाइट टीवी, DVB-C डिजिटल केबल टीवी और DVB-T डिजिटल टेरेस्ट्रियल टीवी के लिए पहला मानक बनाया। इन प्रसारण प्रणालियों का उपयोग एसडीटीवी और एचडीटीवी दोनों के लिए किया जा सकता है। यूएस में ग्रैंड एलायंस (एचडीटीवी) ने एटीएससी मानकों को एसडीटीवी और एचडीटीवी के लिए नए मानक के रूप में प्रस्तावित किया। ATSC और DVB दोनों MPEG-2 मानक पर आधारित थे, हालाँकि DVB सिस्टम का उपयोग नए और अधिक कुशल H.264/MPEG-4 AVC संपीड़न मानकों का उपयोग करके वीडियो प्रसारित करने के लिए भी किया जा सकता है। सभी डीवीबी मानकों के लिए सामान्य बैंडविड्थ को और कम करने के लिए अत्यधिक कुशल मॉड्यूलेशन तकनीकों का उपयोग है, और रिसीवर-हार्डवेयर और एंटीना आवश्यकताओं को कम करने के लिए सबसे महत्वपूर्ण है।[citation needed]

1983 में, अंतर्राष्ट्रीय दूरसंचार संघ के रेडियो दूरसंचार क्षेत्र (ITU-R) ने एकल अंतर्राष्ट्रीय HDTV मानक स्थापित करने के उद्देश्य से एक कार्यकारी दल (IWP11/6) की स्थापना की। कांटेदार मुद्दों में से एक उपयुक्त फ्रेम/फील्ड रिफ्रेश रेट से संबंधित है, दुनिया पहले से ही दो शिविरों में विभाजित है, 25/50 हर्ट्ज और 30/60 हर्ट्ज, मुख्य रूप से मुख्य बिजली आवृत्ति में अंतर के कारण। IWP11/6 वर्किंग पार्टी ने कई विचारों पर विचार किया और 1980 के दशक के दौरान कई वीडियो डिजिटल प्रोसेसिंग क्षेत्रों में विकास को प्रोत्साहित करने के लिए कार्य किया, गति वैक्टर का उपयोग करते हुए दो मुख्य फ्रेम/फील्ड दरों के बीच कम से कम रूपांतरण नहीं हुआ, जिससे अन्य क्षेत्रों में और विकास हुआ। जबकि एक व्यापक एचडीटीवी मानक अंत में स्थापित नहीं किया गया था, पहलू अनुपात पर सहमति हासिल की गई थी।[citation needed]

प्रारंभ में मौजूदा 5:3 पहलू अनुपात मुख्य उम्मीदवार था लेकिन, वाइडस्क्रीन सिनेमा के प्रभाव के कारण, पहलू अनुपात 16:9 (1.78) अंततः 5:3 (1.67) और सामान्य 1.85 के बीच एक उचित समझौता के रूप में उभरा। वाइडस्क्रीन सिनेमा प्रारूप। बीबीसी रिसर्च|बीबीसी के किंग्सवुड वॉरेन में अनुसंधान और विकास प्रतिष्ठान में IWP11/6 कार्यकारी दल की पहली बैठक में 16:9 के पहलू अनुपात पर विधिवत सहमति हुई थी। परिणामी ITU-R अनुशंसा ITU-R BT.709-2 (Rec. 709 ) में 16:9 पहलू अनुपात, एक निर्दिष्ट वर्णमिति, और स्कैन मोड 1080i (1,080 सक्रिय रूप से रिज़ॉल्यूशन की interlaced लाइनें) और 1080p (1,080 प्रगतिशील स्कैन) शामिल हैं पंक्तियाँ)। ब्रिटिश फ्रीव्यू एचडी परीक्षणों ने MBAFF का उपयोग किया, जिसमें एक ही एन्कोडिंग में प्रगतिशील और इंटरलेस्ड सामग्री दोनों शामिल हैं।[citation needed]

इसमें वैकल्पिक 1440×1152 एचडीएमएसी स्कैन प्रारूप भी शामिल है। (कुछ रिपोर्टों के अनुसार, एक प्रस्तावित 750-लाइन (720p) प्रारूप (720 उत्तरोत्तर स्कैन की गई लाइनें) को ITU में कुछ लोगों द्वारा एक सच्चे HDTV प्रारूप के बजाय एक उन्नत टेलीविजन प्रारूप के रूप में देखा गया था,[33] और इसलिए शामिल नहीं किया गया था, हालांकि 1920 × 1080i और 1280 × 720p सिस्टम फ्रेम और फील्ड दरों की एक श्रृंखला के लिए कई यूएस एसएमपीटीई मानकों द्वारा परिभाषित किए गए थे।)[citation needed]

संयुक्त राज्य अमेरिका में एचडीटीवी प्रसारण का उद्घाटन

HDTV तकनीक को संयुक्त राज्य अमेरिका में 1990 के दशक की शुरुआत में पेश किया गया था और 1993 में ग्रैंड अलायंस (HDTV), टेलीविजन, इलेक्ट्रॉनिक उपकरण, संचार कंपनियों के एक समूह द्वारा AT&T (1885-2005)|AT&T Bell Labs, General Instrument से मिलकर आधिकारिक बनाया गया था। , PHILIPS , डेविड सरनॉफ़ रिसर्च सेंटर, थॉमसन एसए, जेनिथ इलेक्ट्रॉनिक्स और मैसाचुसेट्स की तकनीकी संस्था संयुक्त राज्य अमेरिका में 199 साइटों पर एचडीटीवी का फील्ड परीक्षण 14 अगस्त 1994 को पूरा हुआ।[34] संयुक्त राज्य अमेरिका में पहला सार्वजनिक HDTV प्रसारण 23 जुलाई, 1996 को हुआ, जब रैले, उत्तरी कैरोलिना टेलीविजन स्टेशन WRAL-HD ने रैले के WRAL-TV दक्षिण-पूर्व के मौजूदा टॉवर से प्रसारण शुरू किया, HD के साथ पहले होने की दौड़ जीत ली। वाशिंगटन, डीसी में मॉडल स्टेशन, जिसने 31 जुलाई, 1996 को एनबीसी के स्वामित्व वाले और संचालित स्टेशन WRC टीवी की सुविधाओं के आधार पर डब्ल्यूएचडी-टीवी कॉल साइन के साथ प्रसारण शुरू किया।[35][36][37] अमेरिकन उन्नत टेलीविजन सिस्टम समिति (एटीएससी) एचडीटीवी सिस्टम का सार्वजनिक लॉन्च 29 अक्टूबर, 1998 को अंतरिक्ष यात्री जॉन ग्लेन के अंतरिक्ष शटल स्पेस शटल डिस्कवरी पर अंतरिक्ष में वापसी मिशन के लाइव कवरेज के दौरान हुआ था।[38] सिग्नल को तट से तट पर प्रेषित किया गया था, और जनता द्वारा विज्ञान केंद्रों में देखा गया था, और अन्य सार्वजनिक थिएटर विशेष रूप से प्रसारण प्राप्त करने और प्रदर्शित करने के लिए सुसज्जित थे।[38][39]


यूरोपीय एचडीटीवी प्रसारण

1988 और 1991 के बीच, कई यूरोपीय संगठन एसडीटीवी और एचडीटीवी दोनों के लिए असतत कोसाइन ट्रांसफॉर्म (डीसीटी) आधारित डिजिटल वीडियो कोडिंग मानकों पर काम कर रहे थे। सीएमटीटी और ईटीएसआई द्वारा ईयू 256 परियोजना, इतालवी ब्रॉडकास्टर आरएआई के शोध के साथ, एक डीसीटी वीडियो कोडेक विकसित किया गया जो लगभग 70 पर लगभग स्टूडियो-गुणवत्ता एचडीटीवी प्रसारण प्रसारित करता है।–140 एमबिट/से.[23][40] यूरोप में पहला एचडीटीवी प्रसारण, भले ही डायरेक्ट-टू-होम न हो, 1990 में शुरू हुआ, जब आरएआई ने 1990 फीफा विश्व कप को डिजिटल डीसीटी-आधारित ईयू 256 कोडेक सहित कई प्रयोगात्मक एचडीटीवी प्रौद्योगिकियों का उपयोग करके प्रसारित किया।[23]मिश्रित एनालॉग-डिजिटल एचडी-मैक तकनीक, और एनालॉग मल्टीपल सब-निक्विस्ट सैंपलिंग एन्कोडिंग तकनीक। मैचों को इटली में 8 सिनेमाघरों में दिखाया गया, जहां टूर्नामेंट खेला गया था, और 2 स्पेन में। स्पेन के साथ कनेक्शन ओलंपस उपग्रह लिंक के माध्यम से रोम से बार्सिलोना तक और फिर बार्सिलोना से मैड्रिड तक एक प्रकाशित तंतु कनेक्शन के माध्यम से बनाया गया था।[41][42] यूरोप में कुछ एचडीटीवी प्रसारण के बाद, मानक को 1993 में छोड़ दिया गया था, जिसे डिजिटल वीडियो प्रसारण से एक डिजिटल प्रारूप द्वारा प्रतिस्थापित किया जाना था।[43] पहला नियमित प्रसारण 1 जनवरी, 2004 को शुरू हुआ, जब बेल्जियम की कंपनी यूरो 1080 ने पारंपरिक विएना न्यू ईयर कॉन्सर्ट के साथ एचडी1 चैनल लॉन्च किया। सितंबर 2003 में IBC प्रदर्शनी के बाद से परीक्षण प्रसारण सक्रिय हो गया था, लेकिन नए साल के दिन के प्रसारण ने HD1 चैनल के आधिकारिक लॉन्च और यूरोप में डायरेक्ट-टू-होम एचडीटीवी की आधिकारिक शुरुआत को चिह्नित किया।[44] Euro1080, पूर्व और अब दिवालिया बेल्जियम टीवी सेवा कंपनी अल्फाकैम का एक प्रभाग, बिना एचडी प्रसारण के पैन-यूरोपीय गतिरोध को तोड़ने के लिए एचडीटीवी चैनलों का प्रसारण करता है, जिसका मतलब है कि कोई एचडी टीवी नहीं खरीदा गया है, जिसका मतलब है कि कोई एचडी प्रसारण नहीं है ... और यूरोप में एचडीटीवी की दिलचस्पी शुरू करें .[45] HD1 चैनल शुरू में हवा के लिए स्वतंत्र था और इसमें मुख्य रूप से खेल, नाटकीय, संगीत और अन्य सांस्कृतिक कार्यक्रम शामिल थे, जो प्रति दिन 4 या 5 घंटे के रोलिंग शेड्यूल पर बहुभाषी साउंडट्रैक के साथ प्रसारित होते थे।[citation needed]

इन पहले यूरोपीय HDTV प्रसारणों ने SES S.A. के एस्ट्रा 1H उपग्रह से DVB-S सिग्नल पर MPEG-2 संपीड़न के साथ 1080i प्रारूप का उपयोग किया। Euro1080 प्रसारण बाद में यूरोप में बाद के प्रसारण चैनलों के अनुरूप DVB-S2 सिग्नल पर MPEG-4/AVC संपीड़न में बदल गया।[citation needed]

कुछ देशों में देरी के बावजूद,[46] पहले एचडीटीवी प्रसारण के बाद से यूरोपीय एचडी चैनलों और दर्शकों की संख्या में तेजी से वृद्धि हुई है, एसईएस के 2010 के वार्षिक सैटेलाइट मॉनिटर बाजार सर्वेक्षण में एस्ट्रा उपग्रहों से एचडी में प्रसारित 200 से अधिक वाणिज्यिक चैनलों की रिपोर्टिंग, 185 मिलियन एचडी सक्षम टीवी यूरोप में बेचे गए (£ 60) अकेले 2010 में मिलियन), और 20 मिलियन परिवार (सभी यूरोपीय डिजिटल उपग्रह टीवी घरों का 27%) एचडी उपग्रह प्रसारण देख रहे हैं (एस्ट्रा उपग्रहों के माध्यम से 16 मिलियन)।[47] दिसंबर 2009 में, यूनाइटेड किंगडम डिजिटल टेरेस्ट्रियल टेलीविज़न पर डिजिटल टीवी समूह (DTG) डी-पुस्तक में निर्दिष्ट नए DVB-T2 ट्रांसमिशन मानक का उपयोग करके हाई-डेफिनिशन सामग्री को तैनात करने वाला पहला यूरोपीय देश बन गया।[citation needed]

फ्रीव्यू एचडी सेवा में वर्तमान में 13 एचडी चैनल हैं (as of April 2016) और डिजिटल स्विचओवर प्रक्रिया के अनुसार यूके भर में क्षेत्र द्वारा क्षेत्र में रोल आउट किया गया था, अंत में अक्टूबर 2012 में पूरा किया जा रहा था। हालांकि, फ्रीव्यू एचडी यूरोप में डिजिटल टेरेस्ट्रियल टेलीविजन पर पहली एचडीटीवी सेवा नहीं है; DVB-T ट्रांसमिशन मानक का उपयोग करते हुए, इटली के RAI # चैनल चैनल ने 24 अप्रैल, 2008 को 1080i में प्रसारण शुरू किया।[citation needed]

अक्टूबर 2008 में, फ्रांस ने डिजिटल स्थलीय वितरण पर DVB-T ट्रांसमिशन मानक का उपयोग करते हुए पांच हाई डेफिनिशन चैनल तैनात किए।[citation needed]

नोटेशन

एचडीटीवी प्रसारण प्रणालियों की पहचान तीन प्रमुख मापदंडों से की जाती है:

  • पिक्सेल में फ़्रेम आकार को क्षैतिज पिक्सेल की संख्या × लंबवत पिक्सेल की संख्या के रूप में परिभाषित किया गया है, उदाहरण के लिए 1280 × 720 या 1920 × 1080। अक्सर क्षैतिज पिक्सेल की संख्या संदर्भ से निहित होती है और इसे छोड़ दिया जाता है, जैसा कि 720p और 1080p के मामले में होता है।
  • स्कैनिंग सिस्टम की पहचान प्रगतिशील स्कैनिंग के लिए p या इंटरलेस्ड वीडियो के लिए i अक्षर से की जाती है।
  • फ़्रेम दर की पहचान प्रति सेकंड वीडियो फ़्रेम की संख्या के रूप में की जाती है। इंटरलेस्ड सिस्टम के लिए, फ्रेम प्रति सेकंड की संख्या निर्दिष्ट की जानी चाहिए, लेकिन इसके बजाय गलत तरीके से उपयोग की जाने वाली फ़ील्ड दर को देखना असामान्य नहीं है।

यदि सभी तीन मापदंडों का उपयोग किया जाता है, तो वे निम्नलिखित रूप में निर्दिष्ट होते हैं: [फ्रेम आकार] [स्कैनिंग सिस्टम] [फ्रेम या फ़ील्ड दर] या [फ्रेम आकार]/[फ्रेम या फ़ील्ड दर] [स्कैनिंग सिस्टम ][48] अक्सर, फ़्रेम आकार या फ़्रेम दर को छोड़ा जा सकता है यदि इसका मान संदर्भ से निहित हो। इस मामले में, शेष संख्यात्मक पैरामीटर पहले निर्दिष्ट किया जाता है, उसके बाद स्कैनिंग सिस्टम।[citation needed]

उदाहरण के लिए, 1920×1080p25 प्रति सेकंड 25 फ्रेम के साथ प्रगतिशील स्कैनिंग प्रारूप की पहचान करता है, प्रत्येक फ्रेम 1,920 पिक्सेल चौड़ा और 1,080 पिक्सेल ऊंचा होता है। 1080i25 या 1080i50 नोटेशन 25 फ्रेम (50 फ़ील्ड) प्रति सेकेंड के साथ इंटरलेस्ड स्कैनिंग प्रारूप की पहचान करता है, प्रत्येक फ्रेम 1,920 पिक्सेल चौड़ा और 1,080 पिक्सेल ऊंचा होता है। 1080i30 या 1080i60 नोटेशन 30 फ्रेम (60 फ़ील्ड) प्रति सेकेंड के साथ इंटरलेस्ड स्कैनिंग प्रारूप की पहचान करता है, प्रत्येक फ्रेम 1,920 पिक्सेल चौड़ा और 1,080 पिक्सेल ऊंचा होता है। 720p60 नोटेशन 60 फ्रेम प्रति सेकंड के साथ प्रगतिशील स्कैनिंग प्रारूप की पहचान करता है, प्रत्येक फ्रेम 720 पिक्सेल ऊंचा होता है; 1,280 पिक्सेल क्षैतिज रूप से निहित हैं।[citation needed]

50 Hz का उपयोग करने वाले सिस्टम तीन स्कैनिंग दरों का समर्थन करते हैं: 50i, 25p और 50p, जबकि 60 Hz सिस्टम फ़्रेम दर के अधिक व्यापक सेट का समर्थन करते हैं: 59.94i, 60i, 23.976p, 24p, 29.97p, 30p, 59.94p और 60p। मानक-परिभाषा टेलीविजन के दिनों में, भिन्नात्मक दरों को अक्सर पूर्ण संख्याओं तक गोल किया जाता था, उदा। 23.976p को अक्सर 24p कहा जाता था, या 59.94i को अक्सर 60i कहा जाता था। साठ हर्ट्ज हाई डेफिनिशन टेलीविजन आंशिक और थोड़ा भिन्न पूर्णांक दरों दोनों का समर्थन करता है, इसलिए अस्पष्टता से बचने के लिए नोटेशन का सख्त उपयोग आवश्यक है। फिर भी, 29.97p/59.94i को लगभग सार्वभौमिक रूप से 60i कहा जाता है, वैसे ही 23.976p को 24p कहा जाता है।[citation needed]

किसी उत्पाद के व्यावसायिक नामकरण के लिए, फ्रेम दर को अक्सर गिरा दिया जाता है और इसे संदर्भ से निहित किया जाता है (उदाहरण के लिए, एक 1080i टेलीविजन सेट)। एक फ्रेम दर को संकल्प के बिना भी निर्दिष्ट किया जा सकता है। उदाहरण के लिए, 24p का अर्थ है 24 प्रगतिशील स्कैन फ़्रेम प्रति सेकंड और 50i का अर्थ है 25 इंटरलेस्ड फ़्रेम प्रति सेकंड।[49] एचडीटीवी रंग समर्थन के लिए कोई एकल मानक नहीं है। रंग आमतौर पर (10-बिट्स प्रति चैनल) YUV कलर स्पेस का उपयोग करके प्रसारित किए जाते हैं, लेकिन रिसीवर की अंतर्निहित छवि उत्पन्न करने वाली तकनीकों के आधार पर, बाद में मानकीकृत एल्गोरिदम का उपयोग करके RGB कलर स्पेस में परिवर्तित किया जाता है। जब सीधे इंटरनेट के माध्यम से प्रसारित किया जाता है, तो रंग आमतौर पर अतिरिक्त भंडारण बचत के लिए 8-बिट आरजीबी चैनलों में पूर्व-रूपांतरित होते हैं, इस धारणा के साथ कि यह केवल (sRGB) कंप्यूटर स्क्रीन पर ही देखा जाएगा। मूल प्रसारकों के अतिरिक्त लाभ के रूप में, पूर्व-रूपांतरण के नुकसान अनिवार्य रूप से इन फ़ाइलों को पेशेवर टीवी पुन: प्रसारण के लिए अनुपयुक्त बनाते हैं।[citation needed]

अधिकांश एचडीटीवी सिस्टम एटीएससी तालिका 3 या ईबीयू विनिर्देश में परिभाषित प्रस्तावों और फ्रेम दर का समर्थन करते हैं। सबसे आम नीचे नोट किए गए हैं।[citation needed]

प्रदर्शन संकल्प

Video format supported [image resolution] Native resolution [inherent resolution] (W×H) Pixels Aspect ratio (W:H) Description
Actual Advertised (Megapixels) Image Pixel
720p
(HD ready)
1280×720
1024×768
XGA
786,432 0.8 4:3 1:1 Typically a PC resolution (XGA); also a native resolution on many entry-level plasma displays with non-square pixels.
1280×720
921,600 0.9 16:9 1:1 Standard HDTV resolution and a typical PC resolution (WXGA), frequently used by high-end video projectors; also used for 750-line video, as defined in SMPTE 296M, ATSC A/53, ITU-R BT.1543.
1366×768
WXGA
1,049,088 1.0 683:384
(approx. 16:9)
1:1 A typical PC resolution (WXGA); also used by many HD ready TV displays based on LCD technology.
1080p/1080i
(Full HD)
1920×1080
1920×1080
2,073,600 2.1 16:9 1:1 Standard HDTV resolution, used by full HD and HD ready 1080p TV displays such as high-end LCD, plasma and rear projection TVs, and a typical PC resolution (lower than WUXGA); also used for 1125-line video, as defined in SMPTE 274M, ATSC A/53, ITU-R BT.709;
Video format supported Screen resolution (W×H) Pixels Aspect ratio (W:H) Description
Actual Advertised (Megapixels) Image Pixel
720p
(HD Ready)
1280×720
1248×702
Clean Aperture
876,096 0.9 16:9 1:1 Used for 750-line video with faster artifact/overscan compensation, as defined in SMPTE 296M.
1080i
(Full HD)
1920×1080
1440×1080
HDCAM/HDV
1,555,200 1.6 16:9 4:3 Used for anamorphic 1125-line video in the HDCAM and HDV formats introduced by Sony and defined (also as a luminance subsampling matrix) in SMPTE D11.
1080p
(Full HD)
1920×1080
1888×1062
Clean aperture
2,005,056 2.0 16:9 1:1 Used for 1124-line video with faster artifact/overscan compensation, as defined in SMPTE 274M.

कम से कम, एचडीटीवी में मानक-परिभाषा टेलीविजन (एसडीटीवी) के रैखिक रिज़ॉल्यूशन का दोगुना है, इस प्रकार यह एनालॉग टेलीविजन या नियमित डीवीडी की तुलना में अधिक विस्तार दिखाता है। HDTV प्रसारण के तकनीकी मानक भी लेटरबॉक्सिंग (फिल्मांकन) या एनामॉर्फ़िक स्ट्रेचिंग का उपयोग किए बिना 16:9 पहलू अनुपात (छवि) छवियों को संभालते हैं, इस प्रकार प्रभावी छवि रिज़ॉल्यूशन को बढ़ाते हैं।

निष्ठा की हानि के बिना प्रसारित होने के लिए एक बहुत ही उच्च-रिज़ॉल्यूशन स्रोत को उपलब्ध बैंडविड्थ से अधिक बैंडविड्थ की आवश्यकता हो सकती है। सभी डिजिटल एचडीटीवी स्टोरेज और ट्रांसमिशन सिस्टम में उपयोग किया जाने वाला हानिकारक संपीड़न असम्पीडित स्रोत की तुलना में प्राप्त तस्वीर को विकृत कर देगा।

मानक फ्रेम या फ़ील्ड दरें

एटीएससी और डीवीबी विभिन्न प्रसारण मानकों के उपयोग के लिए निम्नलिखित फ्रेम दर को परिभाषित करते हैं:[50][51]

  • 23.976 Hz (NTSC घड़ी गति मानकों के साथ संगत फिल्म-दिखने वाली फ़्रेम दर)
  • 24 हर्ट्ज (अंतर्राष्ट्रीय फिल्म और एटीएससी हाई-डेफिनिशन सामग्री)
  • 25 Hz (PAL फ़िल्म, DVB मानक-परिभाषा और उच्च-परिभाषा सामग्री)
  • 29.97 Hz (NTSC फ़िल्म और मानक-परिभाषा सामग्री)
  • 30 हर्ट्ज (एनटीएससी फिल्म, एटीएससी हाई-डेफिनिशन सामग्री)
  • 50 हर्ट्ज (डीवीबी हाई-डेफिनिशन सामग्री)
  • 59.94 Hz (ATSC हाई-डेफ़िनिशन सामग्री)
  • 60 हर्ट्ज (एटीएससी हाई-डेफिनिशन सामग्री)

एक प्रसारण के लिए इष्टतम प्रारूप वीडियोग्राफिक रिकॉर्डिंग माध्यम के प्रकार और छवि की विशेषताओं पर निर्भर करता है। स्रोत के प्रति सर्वोत्तम निष्ठा के लिए, प्रेषित क्षेत्र अनुपात, रेखाएँ और फ्रेम दर स्रोत के अनुपात से मेल खाना चाहिए।

PAL, SECAM और NTSC फ्रेम रेट तकनीकी रूप से केवल एनालॉग स्टैंडर्ड-डेफिनिशन टेलीविजन पर लागू होते हैं, डिजिटल या हाई डेफिनिशन प्रसारण के लिए नहीं। हालांकि, डिजिटल प्रसारण और बाद में एचडीटीवी प्रसारण के रोलआउट के साथ, देशों ने अपनी विरासत प्रणाली को बनाए रखा। पूर्व PAL और SECAM देशों में HDTV 25/50 Hz की फ़्रेम दर पर संचालित होता है, जबकि पूर्व NTSC देशों में HDTV 30/60 Hz पर संचालित होता है।[52]


मीडिया के प्रकार

उच्च-परिभाषा छवि स्रोतों में स्थलीय टेलीविजन, सीधा प्रसारण उपग्रह, डिजिटल केबल, आईपीटीवी, ब्लू रे वीडियो डिस्क (बीडी) और इंटरनेट डाउनलोड शामिल हैं।

यूएस में, टेलीविजन स्टेशन प्रसारण एंटेना की दृष्टि की रेखा में निवासी एक टीवी एंटिना के माध्यम से एटीएससी ट्यूनर के साथ एक टेलीविजन सेट के साथ मुफ्त, ओवर-द-एयर प्रोग्रामिंग प्राप्त कर सकते हैं। कानून घर के मालिकों के संघों और शहर की सरकार को एंटेना की स्थापना पर प्रतिबंध लगाने से रोकता है।[citation needed]

सिनेमा प्रक्षेपण के लिए उपयोग की जाने वाली मानक 35 मिमी फ़ोटोग्राफिक फिल्म में एचडीटीवी सिस्टम की तुलना में बहुत अधिक छवि रिज़ॉल्यूशन है, और यह 24 चित्र हर क्षण में (फ्रेम / एस) की दर से उजागर और अनुमानित है। पीएएल-सिस्टम देशों में मानक टेलीविजन पर दिखाए जाने के लिए, सिनेमा फिल्म को 25 फ्रेम/एस की टीवी दर पर स्कैन किया जाता है, जिससे 4.1 प्रतिशत की गति बढ़ जाती है, जिसे आम तौर पर स्वीकार्य माना जाता है। एनटीएससी-प्रणाली वाले देशों में, 30 फ्रेम/एस की टीवी स्कैन दर एक बोधगम्य गति का कारण बनेगी यदि इसका प्रयास किया गया था, और आवश्यक सुधार telecine#2:3 पुलडाउन|3:2 पुलडाउन: ओवर प्रत्येक नामक तकनीक द्वारा किया जाता है। फिल्म फ्रेम की क्रमिक जोड़ी, एक को तीन वीडियो क्षेत्रों (एक सेकंड का 1/20) के लिए रखा जाता है और अगला दो वीडियो क्षेत्रों (एक सेकंड का 1/30) के लिए आयोजित किया जाता है, जो 1 / के दो फ्रेम के लिए कुल समय देता है। 12 सेकंड और इस प्रकार सही औसत फिल्म फ्रेम दर प्राप्त करना।

प्रसारण के लिए लक्षित गैर-सिनेमाई एचडीटीवी वीडियो रिकॉर्डिंग आमतौर पर ब्रॉडकास्टर द्वारा निर्धारित 720p या 1080i प्रारूप में रिकॉर्ड की जाती हैं। 720p का उपयोग आमतौर पर हाई-डेफिनिशन वीडियो के इंटरनेट वितरण के लिए किया जाता है, क्योंकि अधिकांश कंप्यूटर मॉनिटर प्रोग्रेसिव-स्कैन मोड में काम करते हैं। 1080i और 1080p दोनों की तुलना में 720p में कम ज़ोरदार स्टोरेज और डिकोडिंग की आवश्यकता होती है। ब्लू-रे डिस्क पर 1080p/24, 1080i/30, 1080i/25, और 720p/30 का सबसे अधिक उपयोग किया जाता है।

रिकॉर्डिंग और संपीड़न

एचडीटीवी को [[डब्ल्यू वीएचएस]] (डिजिटल-वीएचएस या डेटा-वीएचएस), डब्ल्यू-वीएचएस (केवल एनालॉग), एचडीटीवी-सक्षम डिजिटल वीडियो रिकॉर्डर (उदाहरण के लिए DirecTV टीवी के हाई-डेफिनिशन डिजिटल वीडियो रिकॉर्डर, स्काई + एचडी के सेट-टॉप) में रिकॉर्ड किया जा सकता है। बॉक्स, डिश नेटवर्क का वीआईपी 622 या वीआईपी 722 हाई-डेफिनिशन डिजिटल वीडियो रिकॉर्डर रिसीवर (ये सेट टॉप बॉक्स प्राथमिक टीवी पर एचडी और सेकेंडरी टीवी (टीवी2) पर टीवी2 पर सेकेंडरी बॉक्स के बिना एसडी की अनुमति देते हैं), या TiVo सीरीज 3 या एचडी रिकॉर्डर), या एक एचडीटीवी-तैयार एचटीपीसी। कुछ केबल बॉक्स एचडीटीवी प्रारूप में एक समय में दो या अधिक प्रसारण प्राप्त करने या रिकॉर्ड करने में सक्षम हैं, और एचडीटीवी प्रोग्रामिंग, कुछ मासिक केबल सेवा सदस्यता मूल्य में शामिल हैं, कुछ अतिरिक्त शुल्क के लिए, केबल कंपनी के चालू होने पर वापस चलाए जा सकते हैं- मांग सुविधा।[citation needed]

असम्पीडित धाराओं को संग्रहीत करने के लिए आवश्यक डेटा भंडारण की भारी मात्रा का मतलब था कि उपभोक्ता के लिए सस्ती असम्पीडित भंडारण विकल्प उपलब्ध नहीं थे। 2008 में, Hauppauge 1212 व्यक्तिगत वीडियो रिकॉर्डर पेश किया गया था। यह उपकरण घटक वीडियो इनपुट के माध्यम से एचडी सामग्री को स्वीकार करता है और एमपीईजी-2 प्रारूप में सामग्री को .ts फ़ाइल में या ब्लू-रे-संगत प्रारूप में .m2ts फ़ाइल में पीवीआर से जुड़े कंप्यूटर के हार्ड ड्राइव या डीवीडी बर्नर पर संग्रहीत करता है। एक यूएसबी 2.0 इंटरफ़ेस। अधिक हाल की प्रणालियाँ एक प्रसारण हाई डेफिनिशन प्रोग्राम को 'प्रसारण के रूप में' प्रारूप में रिकॉर्ड करने में सक्षम हैं या ब्लू-रे के साथ अधिक संगत प्रारूप में ट्रांसकोड करती हैं।[citation needed]

एनालॉग एचडी संकेतों को रिकॉर्ड करने में सक्षम बैंडविड्थ वाले एनालॉग टेप रिकॉर्डर, जैसे डब्ल्यू-वीएचएस रिकॉर्डर, अब उपभोक्ता बाजार के लिए उत्पादित नहीं किए जाते हैं और द्वितीयक बाजार में महंगे और दुर्लभ दोनों हैं।[citation needed]

संयुक्त राज्य अमेरिका में, FCC के प्लग एंड प्ले समझौते के हिस्से के रूप में, केबल कंपनियों को HD सेट-टॉप बॉक्स किराए पर लेने वाले ग्राहकों को एक कार्यात्मक सेट-टॉप बॉक्स प्रदान करना आवश्यक है। फायरवायर (IEEE 1394) अनुरोध पर। प्रत्यक्ष प्रसारण उपग्रह प्रदाताओं में से किसी ने भी अपने किसी समर्थित बॉक्स पर इस सुविधा की पेशकश नहीं की है, लेकिन कुछ केबल टेलीविजन कंपनियों ने की है। As of July 2004, बॉक्स FCC अधिदेश में शामिल नहीं हैं। यह सामग्री एन्क्रिप्शन द्वारा सुरक्षित है जिसे 5C के रूप में जाना जाता है।[53] यह एन्क्रिप्शन सामग्री के दोहराव को रोक सकता है या केवल अनुमत प्रतियों की संख्या को सीमित कर सकता है, इस प्रकार सामग्री के सभी उचित उपयोग नहीं होने पर प्रभावी रूप से इनकार कर सकता है।[citation needed]

यह भी देखें

संदर्भ

  1. 1.0 1.1 "Teletronic – The Television History Site". Teletronic.co.uk. Retrieved 2011-08-30.
  2. Jones, Graham A. (2005). गैर-इंजीनियरों के लिए एक ब्रॉडकास्ट इंजीनियरिंग ट्यूटोरियल. Taylor & Francis. p. 34. ISBN 9781136035210. Retrieved 2 August 2017.
  3. "The Evolution of TV – A Brief History of TV Technology in Japan". www.nhk.or.jp.
  4. Smith, Kevin (3 August 2012). "10 Game-Changing Pieces of Tech From The 2000s".
  5. Cianci, Philip J. (2012). हाई डेफिनिशन टेलीविजन. NC, USA: McFarland. pp. 1–25. ISBN 978-0-7864-4975-0.
  6. Валерий Хлебородов. "HDTV in the Russian Federation: problems and prospects of implementation (in Russian)". Rus.625-net.ru. Archived from the original on 2013-07-27. Retrieved 2013-03-11.
  7. Reimers, Ulrich (11 August 2018). DVB: The Family of International Standards for Digital Video Broadcasting. Springer Science & Business Media. ISBN 9783540435457 – via Google Books.
  8. "शोधकर्ता क्राफ्ट एचडीटीवी के उत्तराधिकारी". 2007-05-28.
  9. "Digital TV Tech Notes, Issue #2".
  10. James Sudalnik and Victoria Kuhl, "High definition television"
  11. 11.0 11.1 Television, 50 Years of NHK. "50 Years of NHK Television". www.nhk.or.jp.
  12. Times, David E. Sanger and Special To the New York (1989-06-04). "जापान हाई-डेफिनिशन टीवी का प्रसारण शुरू करता है". The New York Times.
  13. Sanger, David E. (1991-11-26). "कुछ सी जापान टीवी इतिहास बनाते हैं". The New York Times.
  14. Pauchon, B. "यूरोप में एनालॉग एचडीटीवी" (PDF).
  15. Farrell, Joseph. "हाई-डेफिनिशन टेलीविजन में मानक सेटिंग" (PDF).
  16. "Technology: . . . while Japan admits that analogue TV is a dead end".
  17. Cianci, Philip J. (10 January 2013). High Definition Television: The Creation, Development and Implementation of HDTV Technology. McFarland. ISBN 9780786487974 – via Google Books.
  18. Pollack, Andrew (1992-07-04). "प्रौद्योगिकी बदलाव ने जापान के नए टीवी सिस्टम के भविष्य को धुंधला कर दिया". The New York Times.
  19. Hart, Jeffrey A. (5 February 2004). Technology, Television, and Competition: The Politics of Digital TV. Cambridge University Press. ISBN 9781139442244 – via Google Books.
  20. SHIVER, JUBE Jr. (23 February 1994). "Japan Gives Up on Analog-Based HDTV System : Technology: Government says U.S.-backed digital format is likely to become a world standard" – via LA Times.
  21. "जापानी एचडीटीवी प्रणाली को पुनर्जीवित करें". Variety. 24 February 1994.
  22. Grimme, Katharina (11 August 2018). डिजिटल टेलीविजन मानकीकरण और रणनीतियाँ. Artech House. ISBN 9781580532976 – via Google Books.
  23. 23.0 23.1 23.2 23.3 23.4 23.5 23.6 Barbero, M.; Hofmann, H.; Wells, N. D. (14 November 1991). "डीसीटी स्रोत कोडिंग और एचडीटीवी के लिए वर्तमान कार्यान्वयन". EBU Technical Review. European Broadcasting Union (251): 22–33. Retrieved 4 November 2019.
  24. Lee, Jack (2005). Scalable Continuous Media Streaming Systems: Architecture, Design, Analysis and Implementation. John Wiley & Sons. p. 25. ISBN 9780470857649.
  25. 25.0 25.1 Shishikui, Yoshiaki; Nakanishi, Hiroshi; Imaizumi, Hiroyuki (October 26–28, 1993). "अनुकूली-आयाम डीसीटी का उपयोग कर एक एचडीटीवी कोडिंग योजना". Signal Processing of HDTV: Proceedings of the International Workshop on HDTV '93, Ottawa, Canada. Elsevier: 611–618. doi:10.1016/B978-0-444-81844-7.50072-3. ISBN 9781483298511.
  26. Ahmed, Nasir (January 1991). "मैं असतत कोसाइन परिवर्तन के साथ कैसे आया". Digital Signal Processing. 1 (1): 4–5. doi:10.1016/1051-2004(91)90086-Z.
  27. Ghanbari, Mohammed (2003). Standard Codecs: Image Compression to Advanced Video Coding. Institution of Engineering and Technology. pp. 1–2. ISBN 9780852967102.
  28. Li, Jian Ping (2006). Proceedings of the International Computer Conference 2006 on Wavelet Active Media Technology and Information Processing: Chongqing, China, 29-31 August 2006. World Scientific. p. 847. ISBN 9789812709998.
  29. Lea, William (1994). Video on demand: Research Paper 94/68. House of Commons Library. Archived from the original on 20 September 2019. Retrieved 20 September 2019.
  30. 30.0 30.1 Cianci, Philip J. (2014). High Definition Television: The Creation, Development and Implementation of HDTV Technology. McFarland. p. 63. ISBN 9780786487974.
  31. brweb (2010-06-17). "हाई डेफिनिशन टेलीविजन आईटीयू के लिए धन्यवाद के युग में आता है". Itu.int. Retrieved 2013-03-11.
  32. Webfactory www.webfactory.ie. "डीवीबी परियोजना का इतिहास". Dvb.org. Retrieved 2013-03-11.
  33. Jim Mendrala (1999-09-27). "Digital TV Tech Notes, Issue #41". Tech-notes.tv. Retrieved 2013-03-11.
  34. "एचडीटीवी क्षेत्र परीक्षण समाप्त हो गया". Allbusiness.com. Retrieved 2010-10-02.
  35. "WRAL डिजिटल का इतिहास". Wral.com. 2006-11-22. Retrieved 2010-10-02.
  36. "WRAL-HD ने HDTV का प्रसारण शुरू किया". Allbusiness.com. Retrieved 2010-10-02.
  37. "मॉडल स्टेशन पर सबसे पहले कॉमर्क ट्रांसमीटर". Allbusiness.com. Retrieved 2010-10-02.
  38. 38.0 38.1 Albiniak, Paige (1998-11-02). "HDTV: Launched and Counting". Broadcasting and cable. BNET. Archived from the original on 2014-09-24. Retrieved 2008-10-24.
  39. "Space Shuttle Discovery: John Glenn Launch". Internet Movie Database. 1998. Retrieved 2008-10-25.
  40. Barbero, M.; Stroppiana, M. (October 1992). "एचडीटीवी प्रसारण और वितरण के लिए डेटा संपीड़न". IEE Colloquium on Applications of Video Compression in Broadcasting: 10/1–10/5.
  41. "ItaLia '90 – il primo passo della HDTV digitale – I parte" [Le Mini Serie – Italia '90 – The First Step of Digital HDTV – part I] (PDF). Archived from the original (PDF) on 2012-06-19.
  42. "ItaLia '90 – il primo passo della HDTV digitale – II parte" [Le Mini Serie – Italia '90 – The First Step of Digital HDTV – part II] (PDF). Archived from the original (PDF) on 2012-06-19.
  43. Cianci, Philip J. (2014-01-10). High Definition Television: The Creation, Development and Implementation of HDTV Technology. McFarland. ISBN 978-0-7864-8797-4.
  44. "SES ASTRA and Euro1080 to pioneer HDTV in Europe" (Press release). SES ASTRA. October 23, 2003. Retrieved January 26, 2012.
  45. Bains, Geoff. "Take The High Road" What Video & Widescreen TV (April, 2004) 22–24
  46. "Weekly Report No.28/2010, Volume 6" (PDF). German Institute for Economic Research. 2010-09-08. Archived (PDF) from the original on 2011-04-08. Retrieved 2017-05-19.
  47. "सैटेलाइट मॉनिटर अनुसंधान". Archived from the original on 2011-08-09. Retrieved 2011-04-28.
  48. "टीवी कैसे खरीदें". Socialbilitty. May 11, 2016. Retrieved June 22, 2017.
  49. "स्कैनिंग के तरीके (पी, आई, पीएसएफ)". ARRI Digital. Retrieved 2011-08-30.
  50. Ben Waggoner (2007), Understanding HD Formats, Microsoft, retrieved 2011-12-09
  51. "Digital Video Broadcasting (DVB); Specification for the use of Video and Audio Coding in Broadcasting Applications based on the MPEG-2 Transport Stream" (PDF). ETSI. 2012. Retrieved 2017-05-19.
  52. Robert Silva, Why NTSC and PAL Still Matter With HDTV, About.com, retrieved 2011-12-09
  53. "5C Digital Transmission Content Protection White Paper" (PDF). 1998-07-14. Archived from the original (PDF) on 2006-06-16. Retrieved 2006-06-20.


अग्रिम पठन


बाहरी संबंध

History
European adoption