गॉसियन ब्लर

From alpha
Jump to navigation Jump to search
छोटे और बड़े गॉसियन ब्लर के बीच का अंतर

इमेज प्रोसेसिंग में, गॉसियन ब्लर (गाउसी मसृणन के रूप में भी जाना जाता है) गाऊसी फलन (गणितज्ञ और वैज्ञानिक कार्ल फ्रेडरिक गॉस के नाम पर) द्वारा छवि को धुंधला करने का परिणाम है।

यह ग्राफिक्स सॉफ्टवेयर में व्यापक रूप से उपयोग किया जाने वाला प्रभाव है, सामान्यतः छवि शोर को कम करने और विवरण को कम करने के लिए उपयोग किया जाता है। इस ब्लर्रिंग तकनीक का दृश्य प्रभाव एक पारदर्शी चित्रपट के माध्यम से छवि को देखने जैसा दिखने वाला एक निर्बाध विकृत है, जो आउट-ऑफ-फोकस लेंस द्वारा उत्पादित बोकेह प्रभाव से अलग है या सामान्य रोशनी के तहत किसी वस्तु की छाया है।

गाउसी मसृणन का उपयोग कंप्यूटर दृष्टि कलन विधि में पूर्व-प्रक्रमण चरण के रूप में भी किया जाता है ताकि विभिन्न मापक्रमों पर छवि संरचनाओं को बढ़ाया जा सके - मापक्रम समष्टि अभ्यावेदन और मापक्रम समष्टि कार्यान्वयन देखें।

गणित

गणितीय रूप से, गॉसियन ब्लर को एक छवि पर लागू करना गाउसी फलन के साथ छवि को घुमाने के समान है। इसे द्वि-आयामी वीयरस्ट्रैस रूपांतरण के रूप में भी जाना जाता है। इसके विपरीत, एक वृत्त (यानी, एक गोलाकार पेटी विकृत) द्वारा कनवॉल्व करने से बोकेह प्रभाव अधिक सटीक रूप से पुन: उत्पन्न होगा।

चूंकि गाउसी का फूरियर रूपांतरण एक और गाउसी है, गॉसियन ब्लर लगाने से छवि के उच्च-आवृत्ति घटकों को कम करने का प्रभाव पड़ता है; गॉसियन ब्लर इस प्रकार एक निम्नपारक निस्यंदक है।

गॉसियन ब्लर के माध्यम से एक अर्धछवि मुद्रण सुचारू रूप से प्रस्तुत किया गया

गॉसियन ब्लर एक प्रकार का इमेज-ब्लर्रिंग निस्यंदक है जो छवि में प्रत्येक चित्रांश पर लागू होने वाले रूपान्तरण (गणित) की गणना के लिए गाउसी फलन (जो आंकड़ों में सामान्य वितरण को भी व्यक्त करता है) का उपयोग करता है। एक आयाम में गाउसी फलन का सूत्र निम्न है

दो आयामों में, यह दो ऐसे गाऊसी कार्यों का उत्पाद है, प्रत्येक आयाम में एक:[1][2][3]
जहाँ x क्षैतिज अक्ष में उत्पत्ति से दूरी है, y ऊर्ध्वाधर अक्ष में मूल बिंदु से दूरी है, और σ गाऊसी वितरण का मानक विचलन है। यह ध्यान रखना महत्वपूर्ण है कि इन अक्षों पर उत्पत्ति केंद्र (0, 0) पर है। जब दो आयामों में लागू किया जाता है, तो यह सूत्र एक ऐसी सतह का निर्माण करता है जिसका केंद्र बिंदु से गाउसी वितरण के साथ संकेंद्रित वृत्त होते हैं।

इस वितरण के मानों का उपयोग संवलन आव्यूह बनाने के लिए किया जाता है जो मूल छवि पर लागू होता है। इस संवलन प्रक्रिया को दाईं ओर की आकृति में दृष्टिगत रूप से चित्रित किया गया है। प्रत्येक चित्रांश का नया मान उस चित्रांश के प्रतिवैस के भारित औसत पर निर्धारित होता है। मूल चित्रांश का मान सबसे भारी वजन प्राप्त करता है (उच्चतम गाउसी मूल्य वाला) और प्रतिवैसी चित्रांश छोटे वजन प्राप्त करते हैं क्योंकि मूल चित्रांश से उनकी दूरी बढ़ जाती है। इसका परिणाम धुंधलापन होता है जो सीमाओं और किनारों को अन्य, अधिक समान ब्लर्रिंग निस्यन्दकों की तुलना में बेहतर बनाए रखता है; मापक्रम समष्टि क्रियान्वयन भी देखें।

सिद्धांत रूप में, छवि पर प्रत्येक बिंदु पर गाउसी फलन गैर-शून्य होगा, जिसका अर्थ है कि संपूर्ण छवि को प्रत्येक चित्रांश के लिए गणना में सम्मिलित करने की आवश्यकता होगी। व्यवहार में, गाउसी फलन के असतत सन्निकटन की गणना करते काल, 3σ से अधिक की दूरी पर चित्रांश प्रभावी रूप से शून्य माने जाने के लिए एक छोटा पर्याप्त प्रभाव रखते हैं। इस प्रकार उस सीमा के बाहर चित्रांश के योगदान को अनदेखा किया जा सकता है। सामान्यतः, एक इमेज प्रोसेसिंग क्रमादेश को केवल आयामों के साथ एक आव्यूह की गणना करने की आवश्यकता होती है × (जहाँ सीमान्त फलन है) पूरे गाउसी वितरण द्वारा प्राप्त परिणाम के काफी करीब सुनिश्चित करने के लिए गणना करने की आवश्यकता होती है।

गोलाकार रूप से सममित होने के अलावा, गॉसियन ब्लर को दो-आयामी छवि पर दो स्वतंत्र एक-आयामी गणनाओं के रूप में लागू किया जा सकता है, और इसलिए इसे एक वियोज्य निस्यंदक कहा जाता है। अर्थात्, द्वि-आयामी आव्यूह को लागू करने का प्रभाव क्षैतिज दिशा में एकल-आयामी गाउसी आव्यूह की एक श्रृंखला को लागू करके, फिर ऊर्ध्वाधर दिशा में प्रक्रिया को दोहराकर भी प्राप्त किया जा सकता है। संगणनात्मक नियमों में, यह एक उपयोगी संपत्ति है,चूँकि गणना काल में की जा सकती है (जहां h ऊंचाई है और w चौड़ाई है; बिग ओ नोटेशन देखें), एक गैर-वियोज्य कर्नेल के लिए विरोध के रूप में है।

एक छवि के लिए क्रमिक गॉसियन ब्लर को लागू करने का प्रभाव एक एकल, बड़े गॉसियन ब्लर को लागू करने के समान होता है, जिसका त्रिज्या विकृत रेडी के वर्गों के योग का वर्गमूल होता है जो वास्तव में लागू किया गया था। उदाहरण के लिए, 6 और 8 की त्रिज्या के साथ क्रमिक गॉसियन ब्लर लगाने से 10 त्रिज्या के एकल गॉसियन ब्लर को लागू करने के समान परिणाम मिलते हैं, क्योंकि है। इस संबंध के कारण, एक गॉसियन ब्लर को क्रमिक, छोटे विकृत के साथ अनुकरण करके प्रसंस्करण काल को नहीं बचाया जा सकता है - आवश्यक काल कम से कम उतना ही बड़ा होगा जितना कि एक बड़े विकृत को करने में है।

आकार घटाने से पहले, गॉसियन ब्लर को नीचे की छवि पर लागू किया गया था, लेकिन शीर्ष छवि पर नहीं। धुंध छवि को कम स्पष्ट बनाता है, लेकिन मोइरे पैटर्न अलियासिंग कलाकृतियों के गठन को रोकता है।

छवि के आकार को कम करते काल गॉसियन ब्लरिंग का सामान्यतः उपयोग किया जाता है। किसी इमेज को डाउनसैंपलिंग करते काल, पुनःप्रतिचयन से पहले छवि पर निम्नपारक निस्यंदक लगाना सामान्य बात है। यह सुनिश्चित करने के लिए है कि नकली उच्च-आवृत्ति जानकारी डाउनसैंपल की गई छवि (उपघटन ) में प्रकट नहीं होती है। गॉसियन ब्लर्स में अच्छे गुण होते हैं, जैसे कोई नुकीला किनारा न होना, और इस प्रकार निस्यंदक की गई छवि में वलयन का परिचय नहीं देता है।

निम्नपारक निस्यंदक

गॉसियन ब्लर एक निम्नपारक निस्यंदक है, जो उच्च आवृत्ति संकेतों को क्षीण करता है।[3]

इसका आयाम बोडे प्लॉट (आवृत्ति कार्यक्षेत्र में अभिलेख मापक्रम) एक परवलय है।

विचरण में कमी

मानक विचलन के साथ गॉसियन निस्यंदक तस्वीर को कितना सुचारू करता है? दूसरे शब्दों में, यह चित्र में चित्रांश मानों के मानक विचलन को कितना कम करता है? मान लें कि ग्रेमापक्रम चित्रांश मानों का मानक विचलन है, फिर निस्यंदक लगाने के बाद कम मानक विचलन के रूप में अनुमानित किया जा सकता है[citation needed]


प्रतिदर्श गाऊसी आव्यूह

यह प्रतिदर्श आव्यूह प्रत्येक चित्रांश के मध्य बिंदु पर गाउसी निस्यंदक कर्नेल (σ = 0.84089642 के साथ) का प्रतिदर्श लेकर और फिर सामान्यीकरण करके तैयार किया जाता है। केंद्र तत्व ([0, 0] पर) का सबसे बड़ा मान है, जो कि केंद्र से दूरी बढ़ने पर सममित रूप से घटता है। चूंकि निस्यंदक कर्नेल की उत्पत्ति केंद्र में है, आव्यूह पर प्रारम्भ होता है और पर समाप्त होता है, जहाँ R कर्नेल त्रिज्या के बराबर है।

तत्व 0.22508352 (केंद्रीय एक) 0.00019117 से 1177 गुना बड़ा है जो 3σ के ठीक बाहर है।

कार्यान्वयन

गॉसियन ब्लर प्रभाव सामान्यतः गाऊसी मूल्यों के एक परिमित आवेग प्रतिक्रिया कर्नेल के साथ एक छवि को हल करके उत्पन्न होता है।

व्यवहार में, प्रक्रिया को दो पासों में विभाजित करके गॉसियन ब्लर की वियोज्य संपत्ति का लाभ उठाना सबसे अच्छा है। पहले पास में, केवल क्षैतिज या ऊर्ध्वाधर दिशा में छवि को धुंधला करने के लिए एक आयामी कर्नेल का उपयोग किया जाता है। दूसरे पास में, उसी एक आयामी कर्नेल का उपयोग शेष दिशा में धुंधला करने के लिए किया जाता है। परिणामी प्रभाव एक ही पास में द्वि-आयामी कर्नेल के साथ दृढ़ीकरण के समान है, लेकिन इसके लिए कम गणना की आवश्यकता होती है।

असतत बिंदुओं पर गाऊसी निस्यंदक कर्नेल का प्रतिदर्श लेकर सामान्यतः प्रत्येक चित्रांश के मध्य बिंदुओं के अनुरूप स्थिति में विखंडन प्राप्त किया जाता है। यह कम्प्यूटेशनल लागत को कम करता है लेकिन, बहुत छोटे निस्यंदक कर्नेल के लिए, गाउसी फलन को बहुत कम प्रतिदर्श के साथ बिंदु प्रतिदर्शकरण एक बड़ी त्रुटि की ओर ले जाता है। इन स्तिथियों में, प्रत्येक चित्रांश के क्षेत्र में गाउसी फलन के एकीकरण द्वारा सटीकता (थोड़ी सी कम्प्यूटेशनल लागत पर) बनाए रखी जाती है।[4]

गाउसी के निरंतर मानों को कर्नेल के लिए आवश्यक असतत मानों में परिवर्तित करते काल, मानों का योग 1 से भिन्न होगा। इससे छवि का कालापन या चमक बढ़ जाएगी। इसे मापने के लिए, कर्नेल में प्रत्येक शब्द को कर्नेल में सभी शब्दों के योग से विभाजित करके मूल्यों को सामान्य किया जा सकता है।

एक बहुत बेहतर और सैद्धांतिक रूप से अधिक अच्छी तरह से स्थापित दृष्टिकोण इसके स्थान पर मापक्रम-समष्टि कार्यान्वयन असतत गाउसी कर्नेल के साथ मसृणीकरण करना है,[5] जो एक असतत कार्यक्षेत्र पर समान गुण रखता है, जो एक निरंतर कार्यक्षेत्र पर निरंतर गाउसी कर्नेल को विशेष बनाता है, उदाहरण के लिए, एक स्थानिक मसृणीकरण प्रक्रिया का वर्णन करने वाले प्रसार समीकरण के समाधान के अनुरूप कर्नेल, प्रसरण के परिवर्धन पर एक अर्ध-समूह संपत्ति का पालन करता है। कर्नेल का, या एक स्थानिक कार्यक्षेत्र पर ब्राउनियन गति के प्रभाव का वर्णन करता है, और इसके मानों का योग बिल्कुल 1 के बराबर होता है। गाउसी कर्नेल के असतत समधर्मी के बारे में अधिक विस्तृत विवरण के लिए, मापक्रम-समष्टि पर कार्यान्वयन मापक्रम-समष्टि कार्यान्वयन आलेख देखें।[5]

उच्च सिग्मा के लिए FIR की दक्षता टूट जाती है। FIR निस्यंदक के विकल्प उपस्थित हैं। इनमें अतिद्रुत विविध पेटी विकृत, द्रुत और सटीक अनंत आवेग प्रतिक्रिया डेरिके कोर संसूचक, पेटी विकृत पर आधारित स्तंभ विकृत, और बहुत कुछ सम्मिलित हैं।[6]


काल-कारण लौकिक मसृणीकरण

पूर्व-लेखाबद्ध किए गए लौकिक संकेतक या वीडियो को संसाधित करने के लिए, गाउसी कर्नेल का उपयोग लौकिक कार्यक्षेत्र पर मसृणन के लिए भी किया जा सकता है, क्योंकि आंकड़े पूर्व-लेखाबद्ध किये गए हैं और सभी दिशाओं में उपलब्ध हैं। वास्तविक काल की स्थितियों में अस्थायी संकेतों या वीडियो को संसाधित करते समय, गाउसी कर्नेल का उपयोग अस्थायी मसृणीकरण के लिए नहीं किया जा सकता है, चूंकि यह भविष्य के आंकड़ों तक पहुंच प्राप्त करेगा, जो स्पष्ट रूप से उपलब्ध नहीं हो सकता है। समयोचित स्थितियों में लौकिक मसृणन के लिए, कोई इसके स्थान पर लौकिक कर्नेल का उपयोग कर सकता है जिसे टाइम-कारण सीमा कर्नेल कहा जाता है,[7] जिसके पास काल-कारण स्थिति में समान गुण होते हैं (बढ़ते मापक्रम और लौकिक मापक्रम सहप्रसरण की ओर नई संरचनाओं का निर्माण नहीं) जैसा कि गाउसी कर्नेल गैर-कारण स्तिथि में पालन करता है। काल-कारण सीमा कर्नेल विशेष रूप से चुने गए काल स्थिरांक के साथ जलप्रपात में युग्मित अनंत संख्या में काटे गए घातीय कर्नेल के साथ संवलन से मेल खाती है। असतत आंकड़ों के लिए, इस कर्नेल को प्रायः जलप्रपात में युग्मित प्रथम-क्रम पुनरावर्ती निस्यंदक के एक छोटे सम्मुच्चय द्वारा संख्यात्मक रूप से अच्छी तरह से अनुमानित किया जा सकता है, अधिक जानकारी के लिए [7] देखें।

सामान्य उपयोग

इससे पता चलता है कि कैसे मसृणीकरण किनारे का पता लगाने को प्रभावित करती है। अधिक मसृणीकरण के साथ, कम किनारों का पता लगाया जाता है

कोर संसूचन

गाउसी मसृणन का उपयोग सामान्यतः कोर संसूचन के साथ किया जाता है। अधिकांश कोर संसूचन कलन विधि शोर के प्रति संवेदनशील होते हैं; लाप्लास संचालक के विवेक से निर्मित 2-D लाप्लासियन निस्यंदक, शोर के वातावरण के प्रति अत्यधिक संवेदनशील है।

कोर संसूचन से पहले गॉसियन ब्लर निस्यंदक का उपयोग करने का उद्देश्य छवि में शोर के स्तर को कम करना है, जो निम्नलिखित कोर संसूचन कलन विधि के परिणाम में सुधार करता है। इस दृष्टिकोण को सामान्यतः गाउसी के लाप्लासियन या एलओजी निस्यंदन के रूप में जाना जाता है।[8]


छायाचित्रण

कई चल दूरभाष छायाचित्रक सहित लोअर-एंड डिजिटल कैमरा, सामान्यतः गॉसियन ब्लरिंग का उपयोग उच्च आईएसओ प्रकाश संवेदनशीलता के कारण छवि शोर को अस्पष्ट करने के लिए करते हैं।

गॉसियन ब्लर छवि छवि संपादन के हिस्से के रूप में स्वचालित रूप से लागू होता है। कैमरा सॉफ्टवेयर द्वारा फोटो के पश्च-प्रसंस्करण के कारण विवरण की अपरिवर्तनीय हानि होती है।[9][better source needed]

यह भी देखें

नोट्स और संदर्भ

  1. Shapiro, L. G. & Stockman, G. C: "Computer Vision", page 137, 150. Prentice Hall, 2001
  2. Mark S. Nixon and Alberto S. Aguado. Feature Extraction and Image Processing. Academic Press, 2008, p. 88.
  3. 3.0 3.1 R.A. Haddad and A.N. Akansu, "A Class of Fast Gaussian Binomial Filters for Speech and Image Processing," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 39, pp 723-727, March 1991.
  4. Erik Reinhard. High dynamic range imaging: Acquisition, Display, and Image-Based Lighting. Morgan Kaufmann, 2006, pp. 233–234.
  5. 5.0 5.1 Lindeberg, T., "Scale-space for discrete signals," PAMI(12), No. 3, March 1990, pp. 234-254.
  6. Getreuer, Pascal (17 December 2013). "गॉसियन कनवल्शन एल्गोरिथम का एक सर्वेक्षण". Image Processing on Line. 3: 286–310. doi:10.5201/ipol.2013.87. (code doc)
  7. 7.0 7.1 Lindeberg, T. (23 January 2023). "A time-causal and time-recursive scale-covariant scale-space representation of temporal signals and past time". Biological Cybernetics: 1–39. doi:10.1007/s00422-022-00953-6.
  8. Fisher, Perkins, Walker & Wolfart (2003). "स्थानिक फिल्टर - गॉसियन का लाप्लासियन". Retrieved 2010-09-13.{{cite web}}: CS1 maint: multiple names: authors list (link)
  9. Ritter, Frank (24 October 2013). "Smartphone-Kameras: Warum gute Fotos zu schießen nicht mehr ausreicht [Kommentar]". GIGA (in Deutsch). GIGA Television. Retrieved 20 September 2020. Bei Fotos, die in der Nacht entstanden sind, dominiert Pixelmatsch.

बाहरी संबंध