विलक्षण विक्षोभ

From alpha
Jump to navigation Jump to search

गणित में, एक विलक्षण विक्षोभ समस्या एक ऐसी समस्या है जिसमें एक लघु पैरामीटर होता है जिस पैरामीटर मान को शून्य पर समूह करके अनुमानित नहीं किया जा सकता है। इस प्रकार अधिक त्रुटिहीन रूप से, समाधान को एसिम्प्टोटिक विस्तार द्वारा समान रूप से अनुमानित नहीं किया जा सकता है

जैसा . यहाँ समस्या का लघु पैरामीटर है और के कार्यों का एक क्रम है बढ़ते क्रम का, जैसे . यह विक्षोभ सिद्धांत समस्याओं के विपरीत है, जिसके लिए इस फॉर्म का एक समान अनुमान प्राप्त किया जा सकता है। इस प्रकार एकल रूप से समस्याओं को सामान्यतः अनेक पैमानों पर संचालित होने वाली गतिशीलता द्वारा चित्रित किया जाता है। एकवचन विक्षोभ के अनेक वर्ग नीचे उल्लिखित हैं।

शब्द "एकवचन त्रुटि" 1940 के दशक में कर्ट ओटो फ्रेडरिक्स और वोल्फगैंग आर. वासो द्वारा गढ़ा गया था ।[1]

विश्लेषण की विधियाँ

एक समस्या जिसका समाधान संपूर्ण समस्या क्षेत्र पर अनुमानित किया जा सकता है, चाहे वह स्थान हो या समय, एक एकल एसिम्प्टोटिक विस्तार द्वारा नियमित त्रुटि होती है । इस प्रकार अधिकांशतः अनुप्रयोगों में, नियमित रूप से समस्या का एक स्वीकार्य अनुमान केवल छोटे पैरामीटर को प्रतिस्थापित करके पाया जाता है समस्या कथन में हर स्थान शून्य। यह विस्तार के केवल पहले पद को लेने से मेल खाता है, जिससे एक अनुमान प्राप्त होता है जो संभवतः धीरे-धीरे सही समाधान तक पहुंचता है। कम हो जाती है. एक विलक्षण विक्षोभ वाली समस्या का समाधान इस तरह से अनुमानित नहीं किया जा सकता है: जैसा कि नीचे दिए गए उदाहरणों में देखा गया है, एक विलक्षण विक्षोभ सामान्यतः तब होती है जब किसी समस्या का लघु पैरामीटर उसके उच्चतम ऑपरेटर को गुणा करता है। इस प्रकार अनजाने में पैरामीटर को शून्य मान लेने से समस्या की प्रकृति ही बदल जाती है। विभेदक समीकरणों के स्थितियों में, सीमा शर्तों को संतुष्ट नहीं किया जा सकता है; बीजगणितीय समीकरणों में, समाधानों की संभावित संख्या कम हो जाती है।

गणितज्ञों, भौतिकविदों और अन्य शोधकर्ताओं के लिए विलक्षण विक्षोभ सिद्धांत अन्वेषण का एक समृद्ध और चालू क्षेत्र है। इस क्षेत्र में समस्याओं से निपटने के लिए उपयोग की जाने वाली विधियाँ अनेक हैं। इनमें से अधिक मूलभूत में स्थानिक समस्याओं के लिए मिलान किए गए एसिम्प्टोटिक विस्तार और डब्ल्यूकेबी सन्निकटन की विधि और समय में, पोनकारे-लिंडस्टेड विधि, और आवधिक औसत सम्मिलित हैं।

एकल विक्षोभ समस्याओं को हल करने के लिए संख्यात्मक विधि भी बहुत लोकप्रिय हैं।[2]

ओडीई और पीडीई में एकल विक्षोभ पर पुस्तकों के लिए, उदाहरण के लिए होम्स, पर्टर्बेशन विधियों का परिचय, देखें[3] हिंच, पर्टर्बेशन विधियां[4] या कार्ल एम. बेंडर और स्टीवन ओर्सज़ैग, वैज्ञानिकों और इंजीनियरों के लिए उन्नत गणितीय विधियों को देखें ।[5]

एकवचन विक्षुब्ध समस्याओं के उदाहरण

नीचे वर्णित प्रत्येक उदाहरण दिखाता है कि कैसे एक अनुभवहीन विक्षोभ विश्लेषण, जो मानता है कि समस्या एकवचन के अतिरिक्त नियमित है, विफल हो जाएगी। कुछ लोग दिखाते हैं कि समस्या को अधिक परिष्कृत एकल विधियों से कैसे हल किया जा सकता है।

साधारण अंतर समीकरणों में लुप्त होने वाले गुणांक

विभेदक समीकरण जिनमें एक लघु पैरामीटर होता है जो उच्चतम क्रम के शब्द को पूर्वगुणित करता है, सामान्यतः सीमा परतों को प्रदर्शित करता है, जिससे कि समाधान दो भिन्न-भिन्न पैमानों में विकसित हो। उदाहरण के लिए, सीमा मूल्य समस्या पर विचार करें

इसका समाधान कब नीचे दिखाया गया ठोस वक्र है। ध्यान दें कि मूल बिंदु के पास समाधान तेजी से बदलता है। यदि हम अनजाने में समूह करते हैं , हमें नीचे "बाहरी" लेबल वाला समाधान मिलेगा जो सीमा परत को मॉडल नहीं करता है, जिसके लिए x शून्य के समीप है। समान रूप से मान्य सन्निकटन कैसे प्राप्त करें, यह दिखाने वाले अधिक विवरण के लिए, मिलान किए गए एसिम्प्टोटिक विस्तार की विधि देखें।

समय में उदाहरण

विद्युत चालित रोबोट मैनिपुलेटर में धीमी यांत्रिक गतिशीलता और तेज़ विद्युत गतिशीलता हो सकती है, इस प्रकार दो समय पैमाने प्रदर्शित होते हैं। इस प्रकार ऐसे स्थितियों में, हम पद्धति को दो उपप्रणालियों में विभाजित कर सकते हैं, एक तेज गतिकी के अनुरूप और दूसरा धीमी गतिकी के अनुरूप, और फिर उनमें से प्रत्येक के लिए भिन्न से नियंत्रक डिजाइन कर सकते हैं। इस प्रकार एक विलक्षण विक्षोभ विधि के माध्यम से, हम इन दो उपप्रणालियों को एक-दूसरे से स्वतंत्र बना सकते हैं, जिससे नियंत्रण समस्या सरल हो जाएगी।

समीकरणों के निम्नलिखित समूह द्वारा वर्णित प्रणाली के एक वर्ग पर विचार करें:

साथ . दूसरा समीकरण इंगित करता है कि की गतिशीलता की तुलना में बहुत तेज़ है . एंड्री निकोलाइविच तिखोनोव के कारण एक प्रमेय में कहा गया है कि, प्रणाली पर सही स्थितियों के साथ, यह प्रारंभ में और बहुत जल्दी समीकरणों के समाधान का अनुमान लगाएगा।

समय के कुछ अंतराल पर और वह, जैसे शून्य की ओर घटने पर, पद्धति उसी अंतराल में समाधान के अधिक समीप पहुंच जाएगा।[6]

क्षेत्रीय उदारण

द्रव यांत्रिकी में, थोड़े चिपचिपे तरल पदार्थ के गुण एक संकीर्ण सीमा परत के बाहर और अंदर नाटकीय रूप से भिन्न होते हैं। इस प्रकार द्रव अनेक स्थानिक पैमाने प्रदर्शित करता है।

प्रतिक्रिया-प्रसार प्रणाली जिसमें एक अभिकर्मक दूसरे की तुलना में बहुत धीमी गति से फैलता है, उन क्षेत्रों द्वारा चिह्नित पैटर्न का निर्माण कर सकता है जहां एक अभिकर्मक उपस्तिथ है, और उनके मध्य तेज बदलाव के साथ उन क्षेत्रों में जहां यह नहीं है। पारिस्थितिकी में, प्रीडेटर - प्री मॉडल जैसे

कहाँ प्री है और प्रीडेटर है, ऐसे पैटर्न प्रदर्शित करते हुए दिखाया गया है।[7]

बीजगणितीय समीकरण

बहुपद के किसी फलन के सभी मूल ज्ञात करने की समस्या पर विचार करें . सीमा में , यह घन फलन द्विघात फलन में परिवर्तित हो जाता है मूलों के साथ . एक नियमित विक्षोभ श्रृंखला को प्रतिस्थापित करना

समीकरण में और की समान शक्तियों को सामान्तर करना केवल इन दो मूलों में सुधार उत्पन्न होता है:

अन्य मूल को खोजने के लिए, एकवचन विक्षोभ विश्लेषण का उपयोग किया जाना चाहिए। फिर हमें इस तथ्य से निपटना होगा कि जब हम अनुमति देते हैं तब समीकरण द्विघात में बदल जाता है शून्य की ओर प्रवृत्त होते हैं, उस सीमा में मूलों में से एक अनंत तक चली जाती है। इस मूल को करने वाले विश्लेषण के लिए अदृश्य होने से रोकने के लिए, हमें पुनर्मूल्यांकन करना होगा इस भागने वाले रूट पर नज़र रखने के लिए जिससे कि पुनर्स्केल किए गए चर के संदर्भ में, यह बच न जाए। इस प्रकार हम एक पुनर्स्केल किए गए वैरिएबल को परिभाषित करते हैं जहां प्रतिपादक इस प्रकार चुना जाएगा कि हम इतनी तेजी से पुनः स्केल करें कि रूट एक सीमित मान पर हो की सीमा में शून्य तक, किन्तु इस तरह कि यह शून्य तक न गिरे जहां अन्य दो मूलें समाप्त हो जाएंगी। के अनुसार हमारे पास है

हम इसके लिए देख सकते हैं निम्न डिग्री शर्तों का प्रभुत्व है, जबकि पर यह उतना ही प्रभावशाली हो जाता है जबकि वह दोनों शेष पद पर हावी हैं। इस प्रकार यह बिंदु जहां उच्चतम ऑर्डर अवधि वर्तमान सीमा में विलुप्त नहीं होगी किसी अन्य पद पर समान रूप से प्रभावी होकर शून्य हो जाना, महत्वपूर्ण अध:पतन कहलाता है; इससे शेष रूट को दृश्यमान बनाने के लिए सही रीस्केलिंग प्राप्त होती है। यह विकल्प उपज देता है

विक्षोभ श्रृंखला को प्रतिस्थापित करना

उत्पन्न

फिर हम मूल में रुचि रखते हैं ; डबल रूट पर वह दो मूल हैं जिन्हें हमने उस अनंत पुनर्स्केलिंग की सीमा में शून्य तक गिर जाने के ऊपर पाया है। इस प्रकार श्रृंखला के पहले कुछ पदों की गणना करने पर परिणाम प्राप्त होता है

संदर्भ

  1. Wasow, Wolfgang R. (1981), "ON BOUNDARY LAYER PROBLEMS IN THE THEORY OF ORDINARY DIFFERENTIAL EQUATIONS" (PDF), Mathematics Research Center, University of Wisconsin-Madison, Technical Summary Report, 2244: PDF page 5
  2. Wang, Yingwei; Chen, Suqin; Wu, Xionghua (2010). "पैरामीटरयुक्त एकवचन गड़बड़ी समस्याओं के एक वर्ग को हल करने के लिए एक तर्कसंगत वर्णक्रमीय संयोजन विधि". Journal of Computational and Applied Mathematics. 233 (10): 2652–2660. doi:10.1016/j.cam.2009.11.011.
  3. Holmes, Mark H. Introduction to Perturbation Methods. Springer, 1995. ISBN 978-0-387-94203-2
  4. Hinch, E. J. Perturbation methods. Cambridge University Press, 1991. ISBN 978-0-521-37897-0
  5. Bender, Carl M. and Orszag, Steven A. Advanced Mathematical Methods for Scientists and Engineers. Springer, 1999. ISBN 978-0-387-98931-0
  6. Verhulst, Ferdinand. Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics, Springer, 2005. ISBN 0-387-22966-3.
  7. Owen, M. R. and Lewis, M. A. "How Predation can Slow, Stop, or Reverse a Prey Invasion", Bulletin of Mathematical Biology (2001) 63, 655-684.