Difference between revisions of "स्थानीय विश्लेषण"

From alpha
Jump to navigation Jump to search
 
(One intermediate revision by one other user not shown)
Line 3: Line 3:
== [[समूह सिद्धांत]] ==
== [[समूह सिद्धांत]] ==
समूह सिद्धांत में सिलो प्रमेय द्वारा स्थानीय विश्लेषण प्रारंभ किया गया था जिसमें जी के क्रम को विभाजित करने वाले प्रत्येक अभाज्य संख्या पी के लिए एक [[परिमित समूह]] जी की संरचना के बारे में महत्वपूर्ण जानकारी सम्मिलित है। अध्ययन के इस क्षेत्र को वर्गीकरण की खोज में अत्यधिक विकसित किया गया था। फीट-थॉम्पसन प्रमेय से प्रारंभ होने वाले परिमित सरल समूह विषम क्रम के समूह [[हल करने योग्य समूह]] हैं।
समूह सिद्धांत में सिलो प्रमेय द्वारा स्थानीय विश्लेषण प्रारंभ किया गया था जिसमें जी के क्रम को विभाजित करने वाले प्रत्येक अभाज्य संख्या पी के लिए एक [[परिमित समूह]] जी की संरचना के बारे में महत्वपूर्ण जानकारी सम्मिलित है। अध्ययन के इस क्षेत्र को वर्गीकरण की खोज में अत्यधिक विकसित किया गया था। फीट-थॉम्पसन प्रमेय से प्रारंभ होने वाले परिमित सरल समूह विषम क्रम के समूह [[हल करने योग्य समूह]] हैं।
'''कदम मोडुलो प्राइम शक्तियों को देखना है और फिर पी-एडिक नंबर पी-एडिक क्षे'''                                                                   
== संख्या सिद्धांत ==
== संख्या सिद्धांत ==
{{main|वलय का स्थानीयकरण}}
{{main|वलय का स्थानीयकरण}}


[[संख्या सिद्धांत]] में कोई [[डायोफैंटाइन समीकरण]] का अध्ययन कर सकता है उदाहरण के लिए सभी अभाज्य p के लिए मॉड्यूलो p समाधान पर बाधाओं की खोज में अगला कदम मोडुलो प्राइम शक्तियों को देखना है और फिर पी-एडिक नंबर पी-एडिक क्षेत्र में समाधान के लिए इस प्रकार का स्थानीय विश्लेषण आवश्यक समाधान के लिए परिस्थितियाँ प्रदान करता है। ऐसे स्थिति में जहां स्थानीय विश्लेषण (साथ ही नियम यह है कि वास्तविक समाधान हैं) भी पर्याप्त स्थिति प्रदान करते हैं कोई कहता है कि [[हस्से सिद्धांत]] धारण करता है: यह सर्वोत्तम संभव स्थिति है। यह [[द्विघात रूप]] के लिए करता है किंतु निश्चित रूप से सामान्य रूप से नहीं (उदाहरण के लिए [[अण्डाकार वक्र]] के लिए) देखने की बात यह है कि कोई यह समझना चाहेगा कि किन अतिरिक्त परिस्थितियों की आवश्यकता है उदाहरण के लिए घन रूपों के लिए बहुत प्रभावशाली रहा है।
[[संख्या सिद्धांत]] में कोई [[डायोफैंटाइन समीकरण]] का अध्ययन कर सकता है उदाहरण के लिए सभी अभाज्य p के लिए मॉड्यूलो p समाधान पर बाधाओं की खोज में अगला कदम मोडुलो प्राइम शक्तियों को देखना है और फिर पी-एडिक नंबर पी-एडिक क्षेत्र में समाधान के लिए इस प्रकार का स्थानीय विश्लेषण आवश्यक समाधान के लिए परिस्थितियाँ प्रदान करता है। ऐसे स्थिति में जहां स्थानीय विश्लेषण (साथ ही नियम यह है कि वास्तविक समाधान हैं) भी पर्याप्त स्थिति प्रदान करते हैं कोई कहता है कि [[हस्से सिद्धांत]] धारण करता है: यह सर्वोत्तम संभव स्थिति है। यह [[द्विघात रूप]] के लिए करता है किंतु निश्चित रूप से सामान्य रूप से नहीं (उदाहरण के लिए [[अण्डाकार वक्र]] के लिए) देखने की बात यह है कि कोई यह समझना चाहेगा कि किन अतिरिक्त परिस्थितियों की आवश्यकता है उदाहरण के लिए घन रूपों के लिए बहुत प्रभावशाली रहा है।


स्थानीय विश्लेषण के कुछ रूप [[विश्लेषणात्मक संख्या सिद्धांत]] में हार्डी-लिटिलवुड सर्कल पद्धति के मानक अनुप्रयोगों और [[एडेल रिंग]] के उपयोग दोनों को रेखांकित करते हैं जिससे यह संख्या सिद्धांत में एकीकृत सिद्धांतों में से एक बन जाता है।
स्थानीय विश्लेषण के कुछ रूप [[विश्लेषणात्मक संख्या सिद्धांत]] में हार्डी-लिटिलवुड सर्कल पद्धति के मानक अनुप्रयोगों और [[एडेल रिंग]] के उपयोग दोनों को रेखांकित करते हैं जिससे यह संख्या सिद्धांत में एकीकृत सिद्धांतों में से एक बन जाता है।
Line 28: Line 25:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 26/05/2023]]
[[Category:Created On 26/05/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 18:22, 6 June 2023

गणित में शब्द स्थानीय विश्लेषण के कम से कम दो अर्थ होते हैं दोनों पहले प्रत्येक अभाज्य संख्या p से संबंधित समस्या को देखने के विचार से प्राप्त होते हैं और फिर बाद में प्रत्येक अभाज्य संख्या पर प्राप्त जानकारी को 'p' में एकीकृत करने का प्रयास करते हैं। वैश्विक 'चित्र ये :श्रेणी:स्थानीयकरण (गणित) दृष्टिकोण के रूप हैं।

समूह सिद्धांत

समूह सिद्धांत में सिलो प्रमेय द्वारा स्थानीय विश्लेषण प्रारंभ किया गया था जिसमें जी के क्रम को विभाजित करने वाले प्रत्येक अभाज्य संख्या पी के लिए एक परिमित समूह जी की संरचना के बारे में महत्वपूर्ण जानकारी सम्मिलित है। अध्ययन के इस क्षेत्र को वर्गीकरण की खोज में अत्यधिक विकसित किया गया था। फीट-थॉम्पसन प्रमेय से प्रारंभ होने वाले परिमित सरल समूह विषम क्रम के समूह हल करने योग्य समूह हैं।

संख्या सिद्धांत

संख्या सिद्धांत में कोई डायोफैंटाइन समीकरण का अध्ययन कर सकता है उदाहरण के लिए सभी अभाज्य p के लिए मॉड्यूलो p समाधान पर बाधाओं की खोज में अगला कदम मोडुलो प्राइम शक्तियों को देखना है और फिर पी-एडिक नंबर पी-एडिक क्षेत्र में समाधान के लिए इस प्रकार का स्थानीय विश्लेषण आवश्यक समाधान के लिए परिस्थितियाँ प्रदान करता है। ऐसे स्थिति में जहां स्थानीय विश्लेषण (साथ ही नियम यह है कि वास्तविक समाधान हैं) भी पर्याप्त स्थिति प्रदान करते हैं कोई कहता है कि हस्से सिद्धांत धारण करता है: यह सर्वोत्तम संभव स्थिति है। यह द्विघात रूप के लिए करता है किंतु निश्चित रूप से सामान्य रूप से नहीं (उदाहरण के लिए अण्डाकार वक्र के लिए) देखने की बात यह है कि कोई यह समझना चाहेगा कि किन अतिरिक्त परिस्थितियों की आवश्यकता है उदाहरण के लिए घन रूपों के लिए बहुत प्रभावशाली रहा है।

स्थानीय विश्लेषण के कुछ रूप विश्लेषणात्मक संख्या सिद्धांत में हार्डी-लिटिलवुड सर्कल पद्धति के मानक अनुप्रयोगों और एडेल रिंग के उपयोग दोनों को रेखांकित करते हैं जिससे यह संख्या सिद्धांत में एकीकृत सिद्धांतों में से एक बन जाता है।

यह भी देखें

श्रेणी:संख्या सिद्धांत श्रेणी:परिमित समूह

श्रेणी:स्थानीयकरण (गणित)