विरूपण (गणित)

From alpha
Jump to navigation Jump to search

गणित में, विरूपण सिद्धांत किसी समस्या के समाधान P को थोड़ा भिन्न समाधान Pε में परिवर्तन से जुड़ी छोटी-छोटी स्थितियों का अध्ययन है, जहां ε छोटी संख्या है, या छोटे परिमाण का सदिश है। अपरिमित स्थितियां बाधा (गणित) के साथ समस्या को निवारण करने के लिए विभेदक गणना के दृष्टिकोण को प्रस्तावित करने का परिणाम अतिसूक्ष्म स्थितियाँ हैं। नाम अन्य-समिष्ट संरचनाओं का ऐसा सादृश्य है जो बाह्य शक्तियों को समायोजित करने के लिए [[विरूपण (अभियांत्रिकी)]] करता है।

कुछ विशिष्ट घटनाएँ हैं: ε परिमाण को नगण्य वर्ग मानकर प्रथम-क्रम समीकरणों की व्युत्पत्ति; भिन्न-भिन्न समाधानों की संभावना, जिसमें भिन्न-भिन्न समाधान संभव नहीं हो सकता है, या कुछ भी नया नहीं लाता है; एवं प्रश्न यह है कि क्या असीम बाधाएं वास्तव में 'एकीकृत' होती हैं, जिससे उनका समाधान छोटे परिवर्तन प्रदान कर सकते है। किसी न किसी रूप में इन विचारों का गणित के साथ-साथ भौतिकी एवं इंजीनियरिंग में भी सदियों प्राचीन इतिहास है। उदाहरण के लिए, संख्याओं की ज्यामिति में परिणामों के वर्ग को भिन्नाव प्रमेय कहा जाता है, जिसे किसी दिए गए समाधान के चारों ओर विवृत कक्षा (समूह क्रिया (गणित)) की टोपोलॉजिकल व्याख्या के साथ मान्यता दी गई थी। त्रुटि सिद्धांत सामान्यतः संक्रियक (गणित) की विकृतियों पर भी ध्यान देता है।

समिष्ट अनेक विविध की विकृतियाँ

गणित में सबसे प्रमुख विरूपण सिद्धांत समिष्ट बहुविध्स एवं बीजगणितीय वर्ग का रहा है। इसे कुनिहिको कोदैरा एवं डोनाल्ड सी. स्पेंसर के मूलभूत कार्य द्वारा सशक्त आधार पर रखा गया था, जब विरूपण प्रौद्योगिकी को बीजीय ज्यामिति के इतालवी विद्यालय में अधिक अस्थायी अनुप्रयोग प्राप्त हुआ था। सहज रूप से, कोई अपेक्षा करता है कि पनिवारणे क्रम के विरूपण सिद्धांत को ज़ारिस्की स्पर्शरेखा स्थान को मापांक स्थान के समान करना चाहिए। चूँकि, सामान्य स्थिति में घटनाएँ सूक्ष्म हो जाती हैं।

रीमैन सतहों के विषय में, कोई यह समझा सकता है कि रीमैन क्षेत्र पर समिष्ट संरचना पृथक है (कोई मॉड्यूल नहीं)। जीनस 1 के लिए, दीर्घवृत्तीय वक्र में समिष्ट संरचनाओं का एक-पैरामीटर समूह होता है, जैसा कि दीर्घवृत्तीय फलन सिद्धांत में दिखाया गया है। सामान्य कोडैरा-स्पेंसर सिद्धांत विरूपण सिद्धांत की कुंजी के रूप में शीफ़ कोहोमोलोजी समूह की पहचान करता है,

जहां Θ होलोमोर्फिक स्पर्शरेखा बंडल (वर्गों के जर्म (गणित) का शीफ) है। उसी शीफ के H2 में बाधा है; जो आयाम के सामान्य कारणों से वक्र के विषय में सदैव शून्य होता है। जीनस 0 के विषय में H1भी गायब हो जाता है. जीनस 1 के लिए आयाम हॉज नंबर h1,0 है, जो इसलिए 1 है। यह ज्ञात है कि जीनस एक के सभी वक्रों में y2 = x3 + ax + b के रूप के समीकरण होते हैं। ये स्पष्ट रूप से दो मापदंडों, a एवं b पर निर्भर करते हैं, जबकि ऐसे वक्रों के समरूपता वर्गों में केवल एक पैरामीटर होता है। इसलिए उन a एवं b से संबंधित समीकरण होना चाहिए जो आइसोमोर्फिक दीर्घवृत्तीय वक्रों का वर्णन करता है। यह वह वक्र है जिसके लिए b2a−3 का मान समान है, समरूपी वक्रों का वर्णन करें। अर्थात a एवं b को भिन्न करना वक्र वाई की संरचना को विकृत करने का उपाय y2 = x3 + ax + b है, परन्तु a,b के सभी रूपांतर वास्तव में वक्र के समरूपता वर्ग को नहीं परिवर्तित करते हैं।

H1 से संबंधित करने के लिए सेरे द्वैत का उपयोग करते हुए, जीनस g >1 के विषय में कोई आगे बढ़ सकता है,

जहां Ω होलोमोर्फिक कोटैंजेंट बंडल एवं अंकन Ω है[2] का अर्थ टेंसर वर्ग (दूसरी बाह्य शक्ति नहीं)है। दूसरे शब्दों में, रीमैन सतह पर विकृतियों को होलोमोर्फिक द्विघात भिन्नताओं द्वारा नियंत्रित किया जाता है, जिसे फिर से शास्त्रीय रूप से जाना जाता है। मापांक स्पेस का आयाम, जिसे इस विषय में टीचमुलर स्पेस कहा जाता है, रीमैन-रोच प्रमेय द्वारा 3g-3 के रूप में गणना की जाती है।

ये उदाहरण किसी भी आयाम के समिष्ट बहुविध्स के होलोमोर्फिक परिवारों पर प्रस्तावित होने वाले सिद्धांत का प्रारम्भ हैं। आगामी विकास में सम्मिलित विभेदक ज्यामिति की अन्य संरचनाओं के लिए स्पेंसर द्वारा प्रौद्योगिकी का विस्तार; ग्रोथेंडिक के अमूर्त बीजगणितीय ज्यामिति में कोडैरा-स्पेंसर सिद्धांत को आत्मसात करना हैं, जिसके परिणामस्वरूप पनिवारणे के कार्य की ठोस व्याख्या हुई; एवं अन्य संरचनाओं का विरूपण सिद्धांत, जैसे कि बीजगणित है।

विरूपण एवं समतल मानचित्र

विरूपण का सबसे सामान्य रूप समतल मानचित्र , समिष्ट-विश्लेषणात्मक स्थानों की, योजना (गणित), या किसी स्थान पर कार्यों के रोगाणु है। ग्रोथेंडिक[1] विकृतियों के लिए इस दूरगामी सामान्यीकरण को खोजने वाले प्रथम व्यक्ति थे एवं उस संदर्भ में सिद्धांत विकसित किया। सामान्य विचार यह है कि सार्वभौमिक समूह का अस्तित्व होना चाहिए, जैसे कि किसी भी विकृति को अद्वितीय पुलबैक वर्ग के रूप में पाया जा सकता है,कई विषयों में, यह सार्वभौमिक समूहया तो हिल्बर्ट योजना या कोट योजना है, या उनमें से किसी का भागफल है। उदाहरण के लिए, वक्रों के मापांक के निर्माण में, इसका निर्माण हिल्बर्ट योजना में चौरस वक्रों के भागफल के रूप में किया गया है। यदि पुलबैक वर्ग अद्वितीय नहीं है, तो समूहकेवल बहुमुखी है।

विश्लेषणात्मक बीजगणित के रोगाणुओं की विकृतियाँ

विरूपण सिद्धांत के उपयोगी एवं सरलता से गणना योग्य क्षेत्रों में से समिष्ट स्थानों के रोगाणुओं के विरूपण सिद्धांत, जैसे कि स्टीन बहुविध, मिश्रित बहुविध, या मिश्रित विश्लेषणात्मक विविधता से आता है।[1]ध्यान दें कि इस सिद्धांत को होलोमोर्फिक फलन, स्पर्शरेखा रिक्त स्थान आदि के रोगाणुओं के संचय पर विचार करके समिष्ट बहुविध्स एवं समिष्ट विश्लेषणात्मक स्थानों में वैश्वीकृत किया जा सकता है। ऐसे बीजगणित इस रूप में होते हैं, जहाँ अभिसम्पूर्ण शक्ति-श्रृंखला का वलय है एवं आदर्श है, उदाहरण के लिए, कई लेखक विलक्षणता के कार्यों के रोगाणुओं का अध्ययन करते हैं, जैसे कि बीजगणित समतल-वक्र विलक्षणता का प्रतिनिधित्व करता है। विश्लेषणात्मक बीजगणित का रोगाणु ऐसे बीजगणित की विपरीत श्रेणी में वस्तु है। फिर, विश्लेषणात्मक बीजगणित के ऐसे रोगाणु का विरूपण विश्लेषणात्मक बीजगणित के रोगाणुओं के समतल मानचित्र द्वारा दिया गया है, जहाँ विशिष्ट बिंदु है ऐसे कि पुलबैक वर्ग में उचित होता है,इन विकृतियों में क्रमविनिमेय वर्गों द्वारा दिया गया तुल्यता संबंध होता है,

जहां क्षैतिज तीर समरूपताएं हैं। उदाहरण के लिए, विश्लेषणात्मक बीजगणित के क्रमविनिमेय आरेख के विपरीत आरेख द्वारा दी गई समतल वक्र विलक्षणता का विरूपण है, वास्तव में, मिल्नोर ने ऐसी विकृतियों का अध्ययन किया, जहां विलक्षणता स्थिरांक द्वारा विकृत हो जाती है, इसलिए अन्य-शून्य पर फाइबर मिल्नोर फाइबर कहा जाता है।

विकृतियों की सह-समसामयिक व्याख्या

यह स्पष्ट होना चाहिए कि विश्लेषणात्मक कार्यों के रोगाणु में कई विकृतियाँ हो सकती हैं। इस कारण से, इस सम्पूर्ण ज्ञान को व्यवस्थित करने के लिए कुछ बही-खाता उपकरणों की आवश्यकता होती है। इन संगठनात्मक उपकरणों का निर्माण टेंगेंट कोहोमोलॉजी का उपयोग करके किया गया है।[1]यह कोसज़ुल-टेट रिज़ॉल्यूशन का उपयोग करके एवं अन्य-नियमित बीजगणित के लिए अतिरिक्त जनरेटर जोड़कर इसे संभावित रूप से संशोधित करके बनाया गया है। विश्लेषणात्मक बीजगणित के विषय में इन संकल्पों को गणितज्ञ गैलिना ट्यूरिना के लिए तजुरिना संकल्प कहा जाता है, जिन्होंने सबसे पनिवारणे ऐसी वस्तुओं का अध्ययन किया था। यह ग्रेडेड-कम्यूटेटिव डिफरेंशियल ग्रेडेड बीजगणित है, ऐसा कि विश्लेषणात्मक बीजगणित का विशेषण मानचित्र है, एवं यह मानचित्र सटीक अनुक्रम में उचित है, फिर, व्युत्पत्तियों के विभेदक श्रेणीबद्ध मॉड्यूल को लेकर , इसकी सह-समरूपता विश्लेषणात्मक बीजगणित के रोगाणु की स्पर्शरेखा सह-समरूपता बनाती है। इन सहसंयोजी समूहों को दर्शाया गया है। में की सभी विकृतियों के विषय में ज्ञान सम्मिलित है एवं सटीक अनुक्रम का उपयोग करके सरलता से गणना की जा सकती है, यदि बीजगणित के लिए समरूपी है तो इसकी विकृतियाँ

के समान होती हैं।

जहाँ , का जैकोबियन मैट्रिक्स है। उदाहरण के लिए, हाइपरसतह की विकृतियाँ द्वारा दी गई हैं जो विकृतियाँ एकवचनता के लिए , यह मॉड्यूल है, इसलिए केवल स्थिरांक या रैखिक कारकों को जोड़कर विकृतियां दी जाती हैं, इसलिए की सामान्य विकृति है, जहां विरूपण पैरामीटर हैं।

कार्यात्मक वर्णन

विरूपण सिद्धांत को औपचारिक बनाने की अन्य विधि श्रेणी पर स्थानीय आर्टिन बीजगणित की फ़नकार पर उपयोग करना है।पूर्व-विरूपण फ़नकार को फ़नकार के रूप में परिभाषित किया गया है ऐसा है कि बिंदु है। विचार यह है कि हम बिंदु के चारों ओर कुछ मापांक स्पेस की असीम संरचना का अध्ययन करना चाहते हैं जहां उस बिंदु के ऊपर रुचि का स्थान है। सामान्यतः ऐसा होता है कि वास्तविक स्थान खोजने के अतिरिक्त मापांक समस्या के लिए फ़ैक्टर का वर्णन करना सरल होता है। उदाहरण के लिए, यदि हम डिग्री में के हाइपरसर्फेस के मापांक-स्पेस पर विचार करना चाहते हैं, तो हम फ़नकार पर विचार कर सकते हैं,

जहाँ

चूँकि सामान्यतः, समुच्चय के अतिरिक्त समूहबद्ध के फ़ैक्टर्स के साथ कार्य करना अधिक सुविधाजनक है। यह वक्रों के मापांक के लिए सत्य है।

अतिसूक्ष्म के विषय में तकनीकी टिप्पणियाँ

गणना में अन्य-समिष्ट तर्कों के लिए गणितज्ञों द्वारा लंबे समय से अतिसूक्ष्म का उपयोग किया जाता रहा है। विचार यह है कि यदि हम बहुपदों पर अतिसूक्ष्म के साथ विचार करें, तभी केवल प्रथम क्रम का अनुबंध वास्तव में आवश्यक हैं; अर्थात् विचार कर सकते हैं कि

है,

इसका सरल अनुप्रयोग यह है कि हम अतिसूक्ष्म का उपयोग करके एकपदी के व्युत्पन्न पा सकते हैं:

,
 इस शब्द में एकपदी का व्युत्पन्न सम्मिलित है, जो गणना में इसके उपयोग को प्रदर्शित करता है। हम इस समीकरण की व्याख्या एकपदी के टेलर विस्तार के पनिवारणे दो पदों के रूप में भी कर सकते हैं। स्थानीय आर्टिन बीजगणित में निलपोटेंट तत्वों का उपयोग करके अतिसूक्ष्म को समिष्ट बनाया जा सकता है। रिंग में  हम देखते हैं कि अतिसूक्ष्म के साथ तर्क कार्य कर सकते हैं। यह अंकन  को प्रेरित करता है, जिसे दोहरी संख्याओं का वलय कहा जाता है।

इसके अतिरिक्त, यदि हम टेलर सन्निकटन के उच्च-क्रम वाले शब्दों पर विचार करना चाहते हैं तो हम आर्टिन बीजगणित पर विचार कर सकते हैं, एकपदी के लिए, मान लीजिए कि दूसरे क्रम का विस्तार लिखना चाहते हैं जो

है,

याद रखें कि टेलर विस्तार (शून्य पर) को इस प्रकार लिखा जा सकता है

इसलिए पूर्व दो समीकरण दर्शाते हैं कि , का दूसरा व्युत्पन्न है।

सामान्यतः, चूंकि हम किसी भी संख्या में चर में टेलर विस्तार के क्रम पर विचार करना चाहते हैं, क्षेत्र में सभी स्थानीय आर्टिन बीजगणित की श्रेणी पर विचार करेंगे।

प्रेरणा

पूर्व-विरूपण फ़ंक्टर की परिभाषा को प्रेरित करने के लिए, क्षेत्र पर प्रक्षेप्य हाइपरसतह पर विचार करें

यदि इस स्थान के अत्यंत छोटे विरूपण पर विचार करना चाहते हैं, तो कार्टेशियन वर्ग लिख सकते हैं

जहाँ है। फिर, दाहिने हाथ के कोने पर स्थित स्थान अतिसूक्ष्म विरूपण का उदाहरण है: निलपोटेंट तत्वों की अतिरिक्त योजना सैद्धांतिक संरचना (जो स्थलाकृतिक रूप से बिंदु है) इस अतिसूक्ष्म डेटा को व्यवस्थित करने की अनुमति देता है। चूँकि हम सभी संभावित विस्तारों पर विचार करना चाहते हैं, इसलिए पूर्वविरूपण फ़ैक्टर को वस्तुओं पर इस प्रकार परिभाषित करने देंगे

,

जहाँ स्थानीय कलाकार -बीजगणितहै -बीजगणित है।

चौरस पूर्व-विरूपण फलनल

किसी भी प्रक्षेपण के लिए पूर्व-विरूपण फ़ैक्टर को चौरस कहा जाता है, जैसे कि कर्नेल में किसी भी तत्व का वर्ग शून्य है, यह अनुमान

है,

यह निम्नलिखित प्रश्न से प्रेरित है: विकृति दी गई है,

क्या इस कार्तीय आरेख का कार्तीय आरेखों तक कोई विस्तार स्थित है,

चौरस नाम योजनाओं के चौरस रूपवाद की उत्पत्ति से आया है।

स्पर्शरेखा स्थान

याद रखें कि किसी योजना का स्पर्शरेखा स्थान को -समुच्चय के रूप में वर्णित किया जा सकता है,

,

जहां स्रोत दोहरी संख्याओं की रिंग है। चूँकि हम कुछ मापांक स्पेस के बिंदु के स्पर्शरेखा स्थान पर विचार कर रहे हैं, हम (पूर्व) विरूपण फ़ैनक्टर के स्पर्शरेखा स्थान को इस प्रकार परिभाषित कर सकते हैं,

है।

विरूपण सिद्धांत के अनुप्रयोग

वक्रों के मापांक का आयाम

बीजगणितीय वक्रों के मापांक के पनिवारणे गुणों में से प्रारंभिक विरूपण सिद्धांत का उपयोग करके अनुमान लगाया जा सकता है। इसके आयाम की गणना के रूप में की जा सकती है, जीनस के चौरस वक्र के लिए, क्योंकि विरूपण स्थान मापांक स्थान का स्पर्शरेखा स्थान है। सेरे द्वैत का उपयोग करते हुए स्पर्शरेखा स्थान के लिए समरूपी है, इसलिए रीमैन-रोच प्रमेय

देता है।

जीनस के वक्रों के लिए क्योंकि है, एवं डिग्रीहै एवं ऋणात्मक डिग्री के पंक्ति बंडलों के लिए है। इसलिए मापांक स्पेस का आयाम है।

मोड़ एवं तोड़

बीजीय विविधता पर तर्कसंगत वक्रों के अस्तित्व का अध्ययन करने के लिए विरूपण सिद्धांत को महत्वपूर्ण सांस्कृतिक संपदा मोरी द्वारा द्विवार्षिक ज्यामिति में प्रसिद्ध रूप से प्रस्तावित किया गया था।[2] फ़ानो किस्म के धनात्कमक आयाम के लिए मोरी ने दिखाया कि प्रत्येक बिंदु से निकलने वाला तर्कसंगत वक्र है। प्रमाण की विधि को पश्चात में मोरी के मोड़ एवं तोड़ के नाम से जाना जाने लगा। विचार यह है कि चयन किये गए बिंदु के माध्यम से कुछ वक्र C से प्रारम्भकिया जाए एवं इसे तब तक विकृत किया जाए जब तक कि यह कई अपरिवर्तनीय घटकों में खंडित न हो जाए। घटकों में से किसी द्वारा C को प्रतिस्थापित करने से वक्र के जीनस या C की बीजगणितीय विविधता की डिग्री में कमी का प्रभाव पड़ता है। इसलिए प्रक्रिया के कई दोहराव के पश्चात, अंततः हम जीनस 0 का वक्र प्राप्त करेंगे, अर्थात् तर्कसंगत वक्र C की विकृतियों के अस्तित्व एवं गुणों के लिए विरूपण सिद्धांत से तर्क एवं धनात्कमक विशेषता में कमी की आवश्यकता होती है।

अंकगणितीय विकृतियाँ

विरूपण सिद्धांत का प्रमुख अनुप्रयोग अंकगणित में है। इसका उपयोग निम्नलिखित प्रश्न का उत्तर देने के लिए किया जा सकता है: यदि हमारे पास विविधता है, संभावित एक्सटेंशन क्या हैं, ? यदि हमारी विविधता वक्र है, तो लुप्त हो रही है I तात्पर्य यह है कि प्रत्येक विकृति विभिन्नता उत्पन्न करती है, ; अर्थात्, यदि हमारे पास चौरस वक्र है

एवं विकृति

,

तब हम इसे सदैव प्रपत्र के आरेख तक विस्तारित कर सकते हैं

इसका तात्पर्य यह है कि हम औपचारिक योजना का निर्माण के ऊपर वक्र देकर कर सकते हैं।

एबेलियन योजनाओं की विकृतियाँ

सेरे-टेट प्रमेय का दावा है कि एबेलियन किस्म A की विकृतियाँ p-विभाज्य समूह की विकृतियों नियंत्रित होती हैं जिसमें इसके p-पावर टोरसन बिंदु सम्मिलित हैं।

गैलोज़ विकृति

विरूपण सिद्धांत का अन्य अनुप्रयोग गैलोज़ विरूपण के साथ है। यह हमें प्रश्न का उत्तर देने की अनुमति देता है: यदि गैलोज़ प्रतिनिधित्व है

है,

हम इसे प्रतिनिधित्व तक कैसे बढ़ा सकते हैं

स्ट्रिंग सिद्धांत से संबंध

बीजगणित (एवं होशचाइल्ड कोहोमोलॉजी) के संदर्भ में उत्पन्न होने वाले तथाकथित डेलिग्ने अनुमान ने स्ट्रिंग सिद्धांत के संबंध में विरूपण सिद्धांत में अधिक रुचि उत्पन की (इस विचार को औपचारिक रूप देने के लिए कि स्ट्रिंग सिद्धांत को किसी बिंदु के विरूपण के रूप में माना जा सकता है- कण सिद्धांत) I प्रारंभिक घोषणाओं में कुछ बाधाओं के पश्चात अब इसे सिद्ध मान लिया गया है। मैक्सिम कोनत्सेविच उन लोगों में से हैं जिन्होंने इसका सामान्यतः स्वीकृत प्रमाण प्रस्तुत किया है।

यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 1.2 Palamodov (1990). "Deformations of Complex Spaces". अनेक जटिल चर IV. Encyclopaedia of Mathematical Sciences. Vol. 10. pp. 105–194. doi:10.1007/978-3-642-61263-3_3. ISBN 978-3-642-64766-6.
  2. Debarre, Olivier (2001). "3. Bend-and-Break Lemmas". Higher-Dimensional Algebraic Geometry. Universitext. Springer.


स्रोत

शैक्षिक

सर्वेक्षण आलेख

बाह्य संबंध