ऑपरेटर (गणित)

From alpha
Jump to navigation Jump to search

गणित में, एक ऑपरेटर आम तौर पर एक मैप_ (गणित) या फ़ंक्शन (गणित) होता है जो किसी स्थान (गणित) के तत्वों पर कार्य करता है ताकि किसी अन्य स्थान के तत्वों का उत्पादन किया जा सके (संभवतः और कभी-कभी एक ही स्थान होने की आवश्यकता होती है)। ऑपरेटर की कोई सामान्य परिभाषा नहीं है, लेकिन इस शब्द का प्रयोग अक्सर फ़ंक्शन के स्थान पर किया जाता है, जब किसी फ़ंक्शन का डोमेन फ़ंक्शन या अन्य संरचित वस्तुओं का एक सेट होता है। इसके अलावा, एक ऑपरेटर के डोमेन को स्पष्ट रूप से चिह्नित करना अक्सर मुश्किल होता है (उदाहरण के लिए एक अभिन्न ऑपरेटर के मामले में), और विस्तारित किया जा सकता है ताकि संबंधित वस्तुओं पर कार्य किया जा सके (एक ऑपरेटर जो कार्यों पर कार्य करता है वह अंतर समीकरणों पर भी कार्य कर सकता है) समाधान वे कार्य हैं जो समीकरण को संतुष्ट करते हैं)। अन्य उदाहरणों के लिए ऑपरेटर (भौतिकी) देखें।

सबसे बुनियादी ऑपरेटर रैखिक मानचित्र हैं, जो वेक्टर रिक्त स्थान पर कार्य करते हैं। रेखीय संचालिकाएँ ऐसे रेखीय मानचित्रों को संदर्भित करती हैं जिनके डोमेन और श्रेणी समान स्थान हैं, उदाहरण के लिए को .[1] [2] ऐसे ऑपरेटर अक्सर निरंतर कार्य जैसे गुणों को संरक्षित करते हैं। उदाहरण के लिए, अवकलन (गणित) और अनिश्चित समाकलन रैखिक संकारक हैं; ऑपरेटर जो उनसे निर्मित होते हैं, उन्हें अंतर ऑपरेटर , इंटीग्रल ऑपरेटर या इंटीग्रो-डिफरेंशियल ऑपरेटर कहा जाता है।

ऑपरेटर का उपयोग गणितीय ऑपरेशन के प्रतीक को दर्शाने के लिए भी किया जाता है। यह कंप्यूटर प्रोग्रामिंग में ऑपरेटर के अर्थ से संबंधित है, ऑपरेटर (कंप्यूटर प्रोग्रामिंग) देखें।

रैखिक ऑपरेटर

सबसे आम प्रकार के ऑपरेटर का सामना रैखिक ऑपरेटरों से होता है। U और V को क्षेत्र (गणित) K पर सदिश समष्टियाँ होने दें। मानचित्र (गणित) A: U → V रैखिक है यदि

सभी x, y के लिए U में और सभी के लिए α, β के लिए K में। इसका मतलब यह है कि एक रैखिक ऑपरेटर वेक्टर स्पेस ऑपरेशंस को संरक्षित करता है, इस अर्थ में कि इससे कोई फर्क नहीं पड़ता कि आप जोड़ और स्केलर गुणा के संचालन से पहले या बाद में लीनियर ऑपरेटर को लागू करते हैं या नहीं। अधिक तकनीकी शब्दों में, रैखिक ऑपरेटर वेक्टर रिक्त स्थान के बीच morphisms हैं।

परिमित-आयामी मामले में रैखिक ऑपरेटरों को निम्नलिखित तरीके से मैट्रिक्स (गणित) द्वारा दर्शाया जा सकता है। होने देना एक क्षेत्र हो, और और परिमित-आयामी वेक्टर रिक्त स्थान बनें . आइए एक आधार चुनें में और में . तो करने दें में एक मनमाना वेक्टर बनें (आइंस्टीन सम्मेलन मानते हुए), और एक रैखिक ऑपरेटर बनें। तब

तब ऑपरेटर का मैट्रिक्स है निश्चित ठिकानों में। की पसंद पर निर्भर नहीं करता है , और अगर . इस प्रकार निश्चित आधारों में एन-बाय-एम मेट्रिसेस रैखिक ऑपरेटरों के लिए विशेषण पत्राचार में हैं को .

परिमित-आयामी वेक्टर रिक्त स्थान के बीच ऑपरेटरों से सीधे संबंधित महत्वपूर्ण अवधारणाएं मैट्रिक्स रैंक, निर्धारक, व्युत्क्रम संकारक और egenspace हैं।

रेखीय संचालक भी अनंत-आयामी मामले में एक बड़ी भूमिका निभाते हैं। रैंक और निर्धारक की अवधारणाओं को अनंत-आयामी मैट्रिसेस तक नहीं बढ़ाया जा सकता है। यही कारण है कि अनंत-आयामी मामले में रैखिक ऑपरेटरों (और सामान्य रूप से ऑपरेटरों) का अध्ययन करते समय बहुत अलग तकनीकें नियोजित होती हैं। अनंत-आयामी मामले में रैखिक ऑपरेटरों के अध्ययन को कार्यात्मक विश्लेषण के रूप में जाना जाता है (इसलिए कहा जाता है क्योंकि कार्यों के विभिन्न वर्ग अनंत-आयामी वेक्टर रिक्त स्थान के दिलचस्प उदाहरण बनाते हैं)।

वास्तविक संख्याओं के अनुक्रमों का स्थान, या अधिक सामान्यतः किसी सदिश स्थान में सदिशों के अनुक्रम, स्वयं एक अनंत-आयामी सदिश स्थान बनाते हैं। सबसे महत्वपूर्ण मामले वास्तविक या जटिल संख्याओं के अनुक्रम हैं, और ये स्थान, रैखिक उप-स्थानों के साथ, अनुक्रम रिक्त स्थान के रूप में जाने जाते हैं। इन स्थानों पर ऑपरेटरों को अनुक्रम परिवर्तन के रूप में जाना जाता है।

मानक ऑपरेटर मानदंड के संबंध में बानाच अंतरिक्ष पर परिबद्ध रैखिक ऑपरेटर एक बानाच बीजगणित बनाते हैं। बनच बीजगणित का सिद्धांत स्पेक्ट्रम (कार्यात्मक विश्लेषण) की एक बहुत ही सामान्य अवधारणा विकसित करता है जो ईजेनस्पेस के सिद्धांत को सामान्य रूप से सामान्यीकृत करता है।

बंधे हुए ऑपरेटर

U और V को एक ही क्रमित फ़ील्ड पर दो सदिश स्थान होने दें (उदाहरण के लिए, ), और वे मानदंड (गणित) से लैस हैं। तब U से V तक एक रैखिक संकारक को 'परिबद्ध' कहा जाता है यदि वहाँ C > 0 ऐसा मौजूद हो

'यू' में सभी एक्स के लिए।

परिबद्ध संकारक एक सदिश स्थान बनाते हैं। इस सदिश स्थान पर हम एक मानदंड पेश कर सकते हैं जो 'यू' और 'वी' के मानदंडों के अनुकूल है:

यू से स्वयं के ऑपरेटरों के मामले में यह दिखाया जा सकता है
इस संपत्ति के साथ किसी भी यूनिटल नॉर्म्ड बीजगणित को बनच बीजगणित कहा जाता है। इस तरह के बीजगणितों के लिए वर्णक्रमीय सिद्धांत को सामान्य बनाना संभव है। C*-अल्जेब्रा, जो कि कुछ अतिरिक्त संरचना वाले बनच सी * - बीजगणित हैं, क्वांटम यांत्रिकी में एक महत्वपूर्ण भूमिका निभाते हैं।

उदाहरण

ज्यामिति

ज्यामिति में, सदिश स्थानों पर अतिरिक्त संरचनाओं का कभी-कभी अध्ययन किया जाता है। ऑपरेटर्स जो इस तरह के वेक्टर रिक्त स्थान को खुद को विशेष रूप से मैप करते हैं, इन अध्ययनों में बहुत उपयोगी होते हैं, वे स्वाभाविक रूप से संरचना द्वारा समूह (गणित) बनाते हैं।

उदाहरण के लिए, सदिश स्थान की संरचना को संरक्षित करने वाले विशेषण संचालिका ठीक उलटा कार्य रैखिक संचालक हैं। वे रचना के तहत सामान्य रेखीय समूह बनाते हैं। वे ऑपरेटरों के योग के तहत एक सदिश स्थान नहीं बनाते हैं, उदा। दोनों आईडी और -आईडी व्युत्क्रमणीय (विशेषण) हैं, लेकिन उनका योग, 0 नहीं है।

ऐसे स्थान पर यूक्लिडियन मीट्रिक को संरक्षित करने वाले ऑपरेटर आइसोमेट्री समूह बनाते हैं, और जो मूल को ठीक करते हैं वे एक उपसमूह बनाते हैं जिसे ऑर्थोगोनल समूह के रूप में जाना जाता है। ऑर्थोगोनल समूह में ऑपरेटर जो वेक्टर ट्यूपल्स के अभिविन्यास को भी संरक्षित करते हैं, विशेष ऑर्थोगोनल समूह या रोटेशन के समूह का निर्माण करते हैं।

संभाव्यता सिद्धांत

संभाव्यता सिद्धांत में ऑपरेटर भी शामिल हैं, जैसे अपेक्षित मूल्य, भिन्नता और सहप्रसरण। दरअसल, हर सहप्रसरण मूल रूप से एक डॉट उत्पाद है; प्रत्येक विचरण स्वयं के साथ एक सदिश का एक डॉट उत्पाद है, और इस प्रकार एक द्विघात मानदंड है; प्रत्येक मानक विचलन एक मानदंड है (द्विघात मानदंड का वर्गमूल); इस डॉट उत्पाद के अनुरूप कोसाइन पियर्सन सहसंबंध गुणांक है; अपेक्षित मूल्य मूल रूप से एक अभिन्न ऑपरेटर है (अंतरिक्ष में भारित आकृतियों को मापने के लिए उपयोग किया जाता है)।

पथरी

कार्यात्मक विश्लेषण के दृष्टिकोण से, कलन दो रैखिक संकारकों का अध्ययन है: अवकल संकारक , और वोल्टेरा ऑपरेटर .

फूरियर श्रृंखला और फूरियर रूपांतरण

फूरियर रूपांतरण लागू गणित, विशेष रूप से भौतिकी और सिग्नल प्रोसेसिंग में उपयोगी है। यह एक और इंटीग्रल ऑपरेटर है; यह मुख्य रूप से उपयोगी है क्योंकि यह एक (अस्थायी) डोमेन पर एक फ़ंक्शन को दूसरे (फ़्रीक्वेंसी) डोमेन पर एक फ़ंक्शन में परिवर्तित करता है, एक तरह से प्रभावी रूप से उलटा कार्य करता है। कोई सूचना खोई नहीं है, क्योंकि एक व्युत्क्रम परिवर्तन संकारक है। आवधिक कार्यों के सरल मामले में, यह परिणाम प्रमेय पर आधारित होता है कि किसी निरंतर आवधिक कार्य को साइन लहरों और कोसाइन तरंगों की श्रृंखला के योग के रूप में दर्शाया जा सकता है:

टपल (अ़0, ए1, बी1, ए2, बी2, ...) वास्तव में एक अनंत-आयामी सदिश अंतरिक्ष अनुक्रम स्थान का एक तत्व है|ℓ2, और इस प्रकार फूरियर श्रृंखला एक रैखिक संकारक है।

सामान्य कार्य से निपटने पर , परिवर्तन एक अभिन्न रूप लेता है:


लाप्लास रूपांतरण

लाप्लास परिवर्तन एक अन्य अभिन्न संकारक है और अंतर समीकरणों को हल करने की प्रक्रिया को सरल बनाने में शामिल है।

दिया हुआ f = f(s), इसे निम्न द्वारा परिभाषित किया गया है:


अदिश और सदिश क्षेत्रों पर मौलिक संचालक

वेक्टर पथरी के लिए तीन ऑपरेटर महत्वपूर्ण हैं:

  • ग्रेड (ग्रेडियेंट ), (ऑपरेटर प्रतीक डेल के साथ) स्केलर फ़ील्ड में प्रत्येक बिंदु पर एक वेक्टर निर्दिष्ट करता है जो उस क्षेत्र की परिवर्तन की सबसे बड़ी दर की दिशा में इंगित करता है और जिसका आदर्श परिवर्तन की उस सबसे बड़ी दर के पूर्ण मूल्य को मापता है।
  • Div (विचलन), (संचालक प्रतीक के साथ Del#Divergence|) एक सदिश संचालिका है जो किसी दिए गए बिंदु से किसी सदिश क्षेत्र के विचलन या अभिसरण को मापता है।
  • कर्ल (गणित), (संचालक प्रतीक के साथ Del#Curl|) एक वेक्टर ऑपरेटर है जो किसी दिए गए बिंदु के बारे में वेक्टर फ़ील्ड के कर्लिंग (चारों ओर घुमावदार, चारों ओर घूमना) प्रवृत्ति को मापता है।

भौतिकी, इंजीनियरिंग और टेंसर स्पेस के लिए वेक्टर कैलकुलस ऑपरेटरों के विस्तार के रूप में, ग्रेड, डिव और कर्ल ऑपरेटर भी अक्सर टेंसर कैलकुलेशन के साथ-साथ वेक्टर कैलकुलस से जुड़े होते हैं।[3]


यह भी देखें

संदर्भ

  1. Rudin, Walter (1976). "Chapter 9: Functions of Several Variables". Principles of Mathematical Analysis (3rd ed.). McGraw-Hill. p. 207. ISBN 0-07-054235-X. Linear transformations of X into X are often called linear operators on X.
  2. Roman, Steven (2008). "Chapter 2: Linear Transformations". Advanced Linear Algebra (3rd ed.). Springer. p. 59. ISBN 978-0-387-72828-5. 1) A linear transformation from V to V is called a linear operator on V. The set of all linear operators on V is denoted (V). A linear operator on a real vector space is called a real operator and a linear operator on a complex vector space is called a complex operator. ... We should also mention that some authors use the term linear operator for any linear transformation from V to W. ... DefinitionThe following terms are also employed: 2) endomorphism for linear operator ... 6) automorphism for bijective linear operator.
  3. H.M. Schey (2005). डिव ग्रैड कर्ल और वह सब. New York: W W Norton. ISBN 0-393-92516-1.