विचलन

From alpha
Jump to navigation Jump to search
A vector field with diverging vectors, a vector field with converging vectors, and a vector field with parallel vectors that neither diverge nor converge
विभिन्न वेक्टर क्षेत्रों का विचलन। बिंदु (एक्स, वाई) से वैक्टर का विचलन एक्स-घटक के आंशिक व्युत्पन्न-के-सम्मान-से-एक्स के योग के बराबर होता है और उस पर वाई-घटक के आंशिक व्युत्पन्न-के- लिए-वाई के योग के बराबर होता है जिसका बिंदु:

सदिश कलन में, विचलन वह सदिश संचालिका है जो सदिश क्षेत्र पर संचालित होता है, प्रत्येक बिंदु पर सदिश क्षेत्र के स्रोत की मात्रा देने वाले अदिश क्षेत्र का उत्पादन भी करता है। अधिक तकनीकी रूप से यदि देंखे तो विचलन किसी दिए गए बिंदु के चारों ओर अधिकतम मात्रा में सदिश क्षेत्र के बाहरी प्रवाह की मात्रा के घनत्व का प्रतिनिधित्व करता है।

उदाहरण के रूप में, हवा को गर्म या ठंडा होने पर यदि बात करें तो प्रत्येक बिंदु पर हवा का वेग सदिश क्षेत्र को परिभाषित करता है। जबकि हवा का क्षेत्र गर्म होता है, यह सभी दिशाओं में फैलता है, और इस प्रकार वेग क्षेत्र उस क्षेत्र से बाहर की ओर इंगित करता है। इस प्रकार उस क्षेत्र में वेग क्षेत्र के विचलन का धनात्मक मूल्य होगा। जबकि हवा ठंडी होती है और इस प्रकार सिकुड़ती है, कि वेग के विचलन का ऋणात्मक मान होता है।

विचलन की भौतिक व्याख्या

भौतिक दृष्टि से, सदिश क्षेत्र का अपसरण वह सीमा है जिस तक सदिश क्षेत्र का प्रवाह किसी दिए गए बिंदु पर स्रोत की तरह व्यवहार करती है। यह इसकी बहिर्गामीता का स्थानीय माप है - वह सीमा जिस तक अंतरिक्ष के अतिसूक्ष्म क्षेत्र से बाहर निकलने वाले क्षेत्र सदिश उसमें प्रवेश करने की तुलना में अधिक हैं। वह बिंदु जिस पर फ्लक्स बहिर्गामी होता है, धनात्मक विचलित होता है और इसे अधिकांश क्षेत्र का स्रोत कहा जाता है। वह बिंदु जिस पर फ्लक्स को अंदर की ओर निर्देशित किया जाता है, ऋणात्मक विचलन होता है, और इसे अधिकांश क्षेत्र का सिंक कहा जाता है। किसी दिए गए बिंदु को घेरने वाली छोटी सतह के माध्यम से क्षेत्र का प्रवाह जितना अधिक होता है, उस बिंदु पर विचलन का मान उतना ही अधिक होता है। वह बिंदु जिस पर संलग्न सतह के माध्यम से शून्य प्रवाह होता है, शून्य विचलन होता है।

सदिश क्षेत्र के विचलन को अधिकांशतः तरल, तरल या गैस के वेग क्षेत्र के सरल उदाहरण का उपयोग करके चित्रित किया जाता है। गतिमान गैस के प्रत्येक बिंदु पर वेग, गति और दिशा होती है, जिसे सदिश (गणित और भौतिकी) द्वारा दर्शाया जा सकता है, इसलिए गैस का वेग सदिश क्षेत्र बनाता है। यदि किसी गैस को गर्म किया जाए तो वह फैलती है। यह सभी दिशाओं में बाहर की ओर गैस कणों की शुद्ध गति का कारण बनेगा। गैस में कोई भी बंद सतह गैस को घेरेगी जो फैल रही है, इसलिए सतह के माध्यम से गैस का बाहरी प्रवाह होगा तो वेग क्षेत्र में हर स्थान पर धनात्मक विचलन होगा। इसी प्रकार यदि गैस को ठंडा किया जाए तो वह सिकुड़ेगी। किसी भी मात्रा में गैस के कणों के लिए अधिक जगह होगी, इसलिए द्रव के बाहरी दबाव से किसी भी बंद सतह के माध्यम से गैस की मात्रा का शुद्ध प्रवाह होगा। इसलिए वेग क्षेत्र में हर जगह ऋणात्मक विचलन होता है। इसके विपरीत, स्थिर तापमान और दबाव पर गैस में, किसी भी बंद सतह से गैस का शुद्ध प्रवाह शून्य होता है। गैस गतिमान हो सकती है, लेकिन किसी भी बंद सतह में प्रवाहित होने वाली गैस की आयतन दर बाहर बहने वाली आयतन दर के बराबर होनी चाहिए, इसलिए शुद्ध प्रवाह शून्य है। इस प्रकार गैस के वेग में हर स्थान पर शून्य मान के साथ विचलित होता है। वह क्षेत्र जिसमें हर स्थान पर शून्य मान के साथ विचलन होता है, सोलेनोइडल वेक्टर क्षेत्र कहलाता है।

यदि गैस को केवल किसी बिंदु या छोटे क्षेत्र में गर्म किया जाता है, या किसी छोटी ट्यूब में प्रस्तुत किया जाता है जो किसी बिंदु पर अतिरिक्त गैस के स्रोत की आपूर्ति करती है, तो वहाँ गैस का विस्तार होगा, इसके चारों ओर द्रव कणों को सभी दिशाओं में बाहर धकेल दिया जाएगा। यह गर्म बिंदु पर केंद्रित पूरे गैस में बाहरी वेग क्षेत्र का कारण बनेगा। गर्म बिंदु को घेरने वाली किसी भी बंद सतह से निकलने वाले गैस कणों का प्रवाह होगा, इसलिए उस बिंदु पर धनात्मक विचलन होता है। चूंकि किसी भी बंद सतह में बिंदु को सम्मलित नहीं करने से अंदर गैस का निरंतर घनत्व होगा, इसलिए जिस प्रकार कई द्रव कण मात्रा छोड़ने के रूप में प्रवेश कर रहे हैं, इस प्रकार आयतन से शुद्ध प्रवाह शून्य है। इसलिए किसी अन्य बिंदु पर विचलन शून्य है।

परिभाषा

एक बिंदु पर विचलन x प्रवाह के अनुपात की सीमा है सतह के माध्यम से Si (लाल तीर) मात्रा के लिए बंद क्षेत्रों के किसी भी क्रम के लिए V1, V2, V3, … संलग्नित x जो ज़ीरो आयतन तक पहुंचता है:

किसी वेक्टर क्षेत्र F का विचलन बिंदु x0 पर F(x) की सतह अभिन्न के अनुपात की सीमा (गणित) के रूप में परिभाषित किया गया है आयतन V की बंद सतह से बाहर V संलग्नित x0 की मात्रा के लिए, जैसा V शून्य हो जाता है

\oiint

जहां |V| का आयतन है V, S(V) की सीमा V है , और उस सतह के लिए बाहरी सामान्य वेक्टर है। इस प्रकार यह देखा जा सकता है कि उपरोक्त सीमा में आयतन के किसी भी अनुक्रम के लिए x0 के समान मान में परिवर्तित हो जाती है और शून्य मात्रा तक पहुँच जाती हैं। परिणाम, div F, का अदिश कार्य x है।

चूंकि यह परिभाषा समन्वय-मुक्त है, यह दर्शाता है कि विचलन किसी भी समन्वय प्रणाली में समान है। चूंकि यह अधिकांशतः विचलन की गणना करने के लिए व्यावहारिक रूप से उपयोग नहीं किया जाता है; जब वेक्टर क्षेत्र समन्वय प्रणाली में दिया जाता है तो नीचे दी गई समन्वय परिभाषाएँ उपयोग करने में बहुत सरल होती हैं।

हर जगह शून्य विचलन वाला सदिश क्षेत्र सोलेनोइडल सदिश क्षेत्र कहलाता है - इस स्थिति में किसी भी बंद सतह के पास कोई शुद्ध प्रवाह नहीं होता है।

निर्देशांक में परिभाषा

कार्तीय निर्देशांक

त्रि-आयामी कार्तीय निर्देशांक में, निरंतर भिन्न वेक्टर क्षेत्र का विचलन अदिश (गणित) के रूप में परिभाषित किया गया है - मूल्यवान कार्य:

चूंकि निर्देशांक के संदर्भ में व्यक्त किया गया है, परिणाम रोटेशन मैट्रिक्स के अनुसार अपरिवर्तनीय है, जैसा कि भौतिक व्याख्या से पता चलता है। इसका कारण यह है कि जैकोबियन मैट्रिक्स का पता लगाना और इसके निर्धारक N-आयामी वेक्टर क्षेत्र F में N-विमीय स्थान किसी भी व्युत्क्रम रैखिक परिवर्तन के अनुसार अपरिवर्तनीय है।

विचलन के लिए सामान्य संकेतन ∇ · F सुविधाजनक स्मरक है, जहां डॉट ऑपरेशन को इंगित करता है जो डॉट उत्पाद की याद दिलाता है: के घटकों को लें तो ऑपरेटर (का देखें), उन्हें संबंधित घटकों पर लागू करें F, और परिणामों का योग करें। क्योंकि यह ऑपरेटर को लागू करना तथा उसके घटकों को गुणा करने से पृथक होता हैं है, इसे अंकन का दुरुपयोग माना जाता है।

बेलनाकार निर्देशांक

स्थानीय इकाई बेलनाकार समन्वय प्रणाली में व्यक्त वेक्टर के लिए

जहां ea दिशा में इकाई वेक्टर है a, अंतर है[1]

अभिव्यक्ति की वैधता के लिए स्थानीय निर्देशांक का उपयोग महत्वपूर्ण है। यदि हम विचार करें x स्थिति वेक्टर और कार्य r(x), θ(x), और z(x), जो सामान्य रूप से सदिश को संबंधित वैश्विक बेलनाकार निर्देशांक प्रदान करते हैं , , और . विशेष रूप से, यदि हम पहचान फंक्शन पर विचार करें F(x) = x, हम पाते हैं कि:

.

गोलाकार निर्देशांक

गोलाकार निर्देशांक में, θ के साथ कोण z अक्ष और φ के चारों ओर घुमाव z अक्ष, और F फिर से स्थानीय इकाई निर्देशांक में लिखा गया विचलन कुछ इस प्रकार है[2]

टेन्सर क्षेत्र

A निरन्तर अवकलनीय दूसरे क्रम के टेंसर क्षेत्र को निम्नानुसार परिभाषित किया गया है:

कार्तीय निर्देशांक प्रणाली में विचलन प्रथम-क्रम टेन्सर क्षेत्र है[3] और दो प्रकार से परिभाषित किया जा सकता है:[4]

और[5][6][7][8]

इस प्रकार हमारे पास निम्नलिखित समीकरण है

यदि टेंसर सममित है Aij = Aji तब . इस प्रकार अधिकांश साहित्य में दो परिभाषाओं (और प्रतीक div और ) को परस्पर उपयोग किया जाता है (विशेष रूप से यांत्रिकी समीकरणों में जहां टेन्सर समरूपता मान ली जाती है)।

इसकी अभिव्यक्ति लेख डेल में बेलनाकार और गोलाकार निर्देशांक में बेलनाकार और गोलाकार निर्देशांक दिए गए हैं।

सामान्य निर्देशांक

आइंस्टीन संकेतन का उपयोग करके हम वक्रीय निर्देशांक में विचलन पर विचार कर सकते हैं, जिसे हम लिखते हैं x1, …, xi, …, xn, जहां n डोमेन के आयामों की संख्या है। यहां, ऊपरी सूचकांक समन्वय या घटक की संख्या को संदर्भित करता है, इसलिए x2 दूसरे घटक को संदर्भित करता है, न कि मात्रा को x चुकता करती हैं। सूचकांक चर i घटक को संदर्भित करने के लिए उपयोग किया जाता है, जैसे xi. विचलन को तब Voss हरमन वेइल सूत्र के माध्यम से लिखा जा सकता है,[9] जैसे:

जहां आयतन तत्व का स्थानीय गुणांक है और Fi के घटक हैं स्थानीय असामान्यीकृत वक्रीय निर्देशांकों के संबंध में सहपरिवर्ती और प्रतिपरिवर्ती आधार (कभी-कभी इस रूप में लिखे जाते हैं ). आइंस्टीन नोटेशन का तात्पर्य योग से अधिक है i, क्योंकि यह ऊपरी और निचले सूचकांक दोनों के रूप में दिखाई देता है।

मात्रा गुणांक ρ स्थिति का कार्य है जो समन्वय प्रणाली पर निर्भर करता है। कार्तीय, बेलनाकार और गोलाकार निर्देशांक में, पहले की तरह ही सम्मेलनों का उपयोग करते हुए, हमारे पास क्रमशः है ρ = 1, ρ = r और ρ = r2 sin θ, इसकी मात्रा के रूप में भी इसे व्यक्त किया जा सकता है जहां gab मीट्रिक टेंसर है। निर्धारक प्रकट होता है क्योंकि यह वैक्टर के सेट को देखते हुए मात्रा की उपयुक्त अपरिवर्तनीय परिभाषा प्रदान करता है। चूंकि निर्धारक अदिश राशि है जो सूचकांकों पर निर्भर नहीं करता है, इन्हें लिखकर दबाया जा सकता है . सामान्य स्थिति को संभालने के लिए पूर्ण मूल्य लिया जाता है जहां निर्धारक ऋणात्मक हो सकता है, जैसे कि छद्म-रीमैनियन रिक्त स्थान इत्यादि। वर्ग-मूल का कारण थोड़ा सूक्ष्म है: यह प्रभावी रूप से दोहरी-गिनती से बचा जाता है क्योंकि घुमावदार होने के कारण इसे कार्तीय निर्देशांक कहा जाता है। आयतन (निर्धारक) को जैकोबियन मैट्रिक्स और कार्तीय से वक्रीय निर्देशांक में परिवर्तन के निर्धारक के रूप में भी समझा जा सकता है, जिसके लिए n = 3 देता है .

कुछ परंपराएं अपेक्षा करती हैं कि सभी स्थानीय आधार तत्वों को इकाई लंबाई तक सामान्यीकृत किया जाए, जैसा कि पिछले अनुभागों में किया गया था। अगर हम लिखते हैं सामान्यीकृत आधार के लिए, और के घटकों के लिए F इसके संबंध में, हमारे पास वह है

मीट्रिक टेंसर के गुणों में से का उपयोग करना। अंतिम समानता के दोनों पक्षों को प्रतिपरिवर्ती तत्व के साथ डॉट करके , हम यह निष्कर्ष निकाल सकते हैं कि . प्रतिस्थापित करने के बाद, सूत्र बन जाता है:

देखो§ वक्रीय निर्देशांक में आगे की चर्चा के लिए।

गुण

निम्नलिखित सभी गुण कलन के सामान्य विभेदन नियमों से प्राप्त किए जा सकते हैं। सबसे महत्वपूर्ण बात, विचलन रैखिक संकारक है, अर्थात,

सभी वेक्टर क्षेत्रों के लिए F और G और सभी वास्तविक संख्याएँ a और b.

निम्न प्रकार का उत्पाद नियम है: यदि φ अदिश-मूल्यवान कार्य है और F सदिश क्षेत्र है, तो

या अधिक विचारोत्तेजक संकेतन में

दो वेक्टर क्षेत्रों के क्रॉस उत्पाद के लिए अन्य उत्पाद नियम F और G तीन आयामों में कर्ल (गणित) सम्मलित है और निम्नानुसार पढ़ता है:

या

अदिश क्षेत्र का लाप्लासियन क्षेत्र के ढाल का विचलन है:

किसी भी सदिश क्षेत्र (तीन आयामों में) के कर्ल (गणित) का विचलन शून्य के बराबर है:

यदि सदिश क्षेत्र F शून्य विचलन के साथ गेंद पर परिभाषित किया गया है, तो वहाँ R3 सदिश क्षेत्र मौजूद है G के साथ गेंद पर F = curl G. में क्षेत्रों के लिए R3 इससे अधिक सामयिक रूप से जटिल होने के बाद वाले कथन को गलत कर सकता है (पॉइनकेयर लेम्मा देखें)। चेन कॉम्प्लेक्स के होमोलॉजी (गणित) द्वारा मापा गया बयान की सच्चाई की विफलता की डिग्री

अंतर्निहित क्षेत्र की जटिलता की अच्छी मात्रा के रूप में कार्य करता है U. ये डॉ कहलमज गर्भाशय के प्रारंभ की मुख्य प्रेरणाएँ हैं।

अपघटन प्रमेय

यह देखा जा सकता है कि कोई भी स्थिर प्रवाह v(r) में दो बार लगातार R3 पर अवकलनीय है और अधिक तेजी से विलुप्त हो जाता है जहाँ |r| → ∞ अपरिमेय भाग में विशिष्ट रूप से विघटित किया जा सकता है E(r) और स्रोत-मुक्त भाग B(r). इसके अतिरिक्त, इन भागों को स्पष्ट रूप से संबंधित स्रोत घनत्व (ऊपर देखें) और संचलन घनत्व (लेख कर्ल (गणित) देखें) द्वारा निर्धारित किया जाता है:

इर्रोटेशनल पार्ट के लिए किसी के पास है

इस प्रकार

स्रोत-मुक्त भाग, B, इसी प्रकार लिखा जा सकता है: केवल स्केलर क्षमता को बदलना होगा Φ(r) वेक्टर क्षमता द्वारा A(r) और शर्तें −∇Φ द्वारा +∇ × A, और स्रोत घनत्व div v

परिसंचरण घनत्व द्वारा ∇ × v.

यह अपघटन प्रमेय बिजली का गतिविज्ञान के स्थिर स्थिति का उप-उत्पाद है। यह अधिक सामान्य हेल्महोल्ट्ज़ अपघटन का विशेष मामला है, जो तीन से अधिक आयामों में भी काम करता है।

परिमित आयामों में

सदिश क्षेत्र के विचलन को किसी भी आयामों की परिमित संख्या में परिभाषित किया जा सकता है। यदि

यूक्लिडियन समन्वय प्रणाली में निर्देशांक के साथ x1, x2, ..., xn, परिभाषित करना

1D स्थिति में, F नियमित कार्य को कम कर देता है, और विचलन व्युत्पन्न को कम कर देता है।

nविचलन रैखिक ऑपरेटर है, और यह उत्पाद किसी φ. स्केलर-वैल्यू फ़ंक्शन के नियम को संतुष्ट करता है

बाहरी व्युत्पन्न से संबंध

कोई बाहरी व्युत्पन्न के विशेष स्थिति के रूप में विचलन को व्यक्त कर सकता है, R3 2-रूप को 3-रूप में लेता है। वर्तमान दो-रूप को परिभाषित करें

यह घनत्व के सामान द्रव में प्रति इकाई समय सतह के माध्यम से बहने वाली सामग्री की मात्रा को मापता है ρ = 1 dxdydz स्थानीय वेग F से चलती है। इसका बाहरी व्युत्पन्न dj इसके बाद दिया जाता है

जहां कील उत्पाद है।

इस प्रकार, वेक्टर क्षेत्र का विचलन F के रूप में व्यक्त किया जा सकता है:

यहाँ सुपरस्क्रिप्ट दो संगीत समरूपताओं में से है, और हॉज स्टार ऑपरेटर है। जब विचलन इस प्रकार लिखा जाता है, संकारक अलग-अलग कहा जाता है। वेक्टर क्षेत्र और विचलन के साथ काम करने की तुलना में वर्तमान दो-रूप और बाहरी व्युत्पन्न के साथ काम करना सामान्यतः सरल होता है, क्योंकि विचलन के विपरीत, बाहरी व्युत्पन्न (वक्रीय) समन्वय प्रणाली के परिवर्तन के साथ आवागमन करता है।

वक्रीय निर्देशांक में

उपयुक्त व्यंजक वक्ररेखीय निर्देशांक ग्रेड, कर्ल, डिव, लाप्लासियन में अधिक जटिल है। सदिश क्षेत्र का विचलन स्वाभाविक रूप से आयाम के किसी भी अलग-अलग कई गुना तक फैलता है n जिसका आयतन μ का रूप है (या कई गुना घनत्व) , उदा. रीमैनियन कई गुना या लोरेंट्ज़ियन कई गुना सदिश क्षेत्र के लिए दो रूपों के लिए R3 के निर्माण का सामान्यीकरण , ऐसे कई गुना सदिश क्षेत्र पर X परिभाषित करता है (n − 1)-प्रपत्र j = iXμ अनुबंध करके प्राप्त किया X साथ μ. विचलन तब द्वारा परिभाषित कार्य है

विचलन को झूठ व्युत्पन्न के रूप में परिभाषित किया जा सकता है

इसका तात्पर्य यह है कि विचलन इकाई मात्रा (एक मात्रा तत्व) के विस्तार की दर को मापता है क्योंकि यह वेक्टर क्षेत्र के साथ बहती है।

किसी छद्म-रीमैनियन मैनिफोल्ड पर, मात्रा के संबंध में विचलन लेवी-सिटिवी कनेक्शन के संदर्भ में व्यक्त किया जा सकता है :

जहां दूसरी अभिव्यक्ति सदिश क्षेत्र का संकुचन है जिसका मूल्य 1-रूप है X स्वयं के साथ और अंतिम अभिव्यक्ति घुंघराले कैलकुलस से पारंपरिक समन्वय अभिव्यक्ति है।

कनेक्शन का उपयोग किए बिना समकक्ष अभिव्यक्ति है

जहां g मीट्रिक टेंसर है और समन्वय के संबंध में xa (के निर्धारक का निरपेक्ष मान) आंशिक व्युत्पन्न को दर्शाता है। मीट्रिक का वर्गमूल प्रकट होता है क्योंकि विचलन को मात्रा की सही अवधारणा के साथ लिखा जाना चाहिए। घुमावदार निर्देशांक में, आधार सदिश अब असामान्य नहीं हैं; निर्धारक इस स्थिति में मात्रा के सही विचार को कूटबद्ध करता है। यहाँ पर यह बार प्रकट होता है, जिससे कि फ्लैट स्थान में परिवर्तित किया जा सकता है (जहां निर्देशांक वास्तव में ऑर्थोनॉर्मल हैं), और बार फिर ऐसा समतल स्थान में भी परिवर्तित हो जाता है, जिससे कि अंत में, साधारण विचलन को समतल स्थान में आयतन की सामान्य अवधारणा के साथ लिखा जा सके (अर्थात इकाई आयतन, अर्थात एक, अर्थात नीचे नहीं लिखा गया)। वर्ग-मूल भाजक में दिखाई देता है, क्योंकि व्युत्पन्न विपरीत विधि से (सहप्रसरण और सदिशों का प्रतिप्रसरण) सदिश (जो सदिशों का सहप्रसरण और प्रतिप्रसरण है) में परिवर्तित होता है। समतल समन्वय प्रणाली प्राप्त करने का यह विचार जहां पारंपरिक विधि से स्थानीय संगणना की जा सकती है, उसे माईलेग्स (mylegs) कहा जाता है। इसे देखने की अलग विधि यह ध्यान रखना है कि विचलन भेष में कोडिफरेंशियल है। विचलन अभिव्यक्ति से मेल खाता है साथ फंक्शन का अंतर और हॉज स्टार या हॉज स्टार, इसके निर्माण से, आयतन फॉर्म को सभी सही जगहों पर प्रकट होने का कारण बनता है।

टेन्सर का विचलन

डायवर्जेंस को टेंसर्स के लिए सामान्यीकृत भी किया जा सकता है। आइंस्टीन संकेतन में, प्रतिपरिवर्ती सदिश का विचलन द्वारा दिया गया है

कहां μ सहपरिवर्ती व्युत्पन्न को दर्शाता है। इस सामान्य सेटिंग में, विचलन का सही सूत्रीकरण यह पहचानना है कि यह सह-विभेदक है; उपयुक्त गुण वहां से अनुसरण करते हैं।

समतुल्य रूप से, कुछ लेखक संगीत समरूपता का उपयोग करके मिश्रित टेंसर के विचलन को परिभाषित करते हैं : यदि T है (p, q)-टेंसर (p प्रतिपरिवर्ती सदिश के लिए और q सहसंयोजक के लिए), फिर हम विचलन को परिभाषित करते हैं, इस प्रकार टेंसरT के लिए (p, q − 1)-

अर्थात् हम सहपरिवर्ती व्युत्पन्न के पहले दो सहपरिवर्ती सूचकांकों पर ट्रेस लेते हैं।[lower-alpha 1]

 h> प्रतीक संगीत समरूपता को संदर्भित करता है।

यह भी देखें

  • कर्ल (गणित)
  • डेल बेलनाकार और गोलाकार निर्देशांक में
  • विचलन प्रमेय
  • ग्रेडिएंट

टिप्पणियाँ

  1. The choice of "first" covariant index of a tensor is intrinsic and depends on the ordering of the terms of the Cartesian product of vector spaces on which the tensor is given as a multilinear map V × V × ... × V → R. But equally well defined choices for the divergence could be made by using other indices. Consequently, it is more natural to specify the divergence of T with respect to a specified index. There are however two important special cases where this choice is essentially irrelevant: with a totally symmetric contravariant tensor, when every choice is equivalent, and with a totally antisymmetric contravariant tensor (a.k.a. a k-vector), when the choice affects only the sign.

उद्धरण

  1. Cylindrical coordinates at Wolfram Mathworld
  2. Spherical coordinates at Wolfram Mathworld
  3. Gurtin 1981, p. 30.
  4. "1.14 टेंसर कैलकुलस I: टेंसर फील्ड्स" (PDF). Foundations of Continuum Mechanics. Archived (PDF) from the original on 2013-01-08.
  5. William M. Deen (2016). Introduction to Chemical Engineering Fluid Mechanics. Cambridge University Press. p. 133. ISBN 978-1-107-12377-9.{{cite book}}: CS1 maint: uses authors parameter (link)
  6. Sara Noferesti, Hassan Ghassemi, Hashem Nowruzi (15 May 2019). "Numerical Investigation on the Effects of Obstruction and Side Ratio on Non-Newtonian Fluid Flow Behavior Around a Rectangular Barrier" (PDF). Journal of Applied Mathematics and Computational Mechanics. 18: 56,59. doi:10.17512/jamcm.2019.1.05.{{cite journal}}: CS1 maint: uses authors parameter (link)
  7. Tasos C. Papanastasiou, Georgios C. Georgiou, Andreas N. Alexandrou (2000). Viscous Fluid Flow (PDF). CRC Press. p. 66,68. ISBN 0-8493-1606-5. Archived (PDF) from the original on 2020-02-20.{{cite book}}: CS1 maint: uses authors parameter (link)
  8. Adam Powell (12 April 2010). "The Navier-Stokes Equations" (PDF).
  9. Grinfeld, Pavel. "वॉस-वेइल फॉर्मूला (यूट्यूब लिंक)". YouTube. Archived from the original on 2021-12-11. Retrieved 9 January 2018.


संदर्भ


बाहरी कड़ियाँ