शून्य से विभाजन

From alpha
Jump to navigation Jump to search

अन्य उपयोगों के लिए, विभाजन को शून्य (बहुविकल्पी) देखें।

Graph showing the diagrammatic representation of limits approaching infinity
क्रमादेश y = 1/x. जैसा x दृष्टिकोण 0 दायें से, y अनंत तक पहुँचता है। जैसा x दृष्टिकोण 0 बाएं से, y ऋणात्मक अनंत तक पहुंचता है।

गणित में, शून्य से विभाजन वह विभाजन है जहाँ भाजक (हर) शून्य होता है इस तरह के विभाजन को औपचारिक रूप से व्यक्त किया जा रहा है , जहाँ पर a अंश है। साधारण अंकगणित में, व्यंजक का कोई अर्थ नहीं है, क्योंकि ऐसी कोई संख्या नहीं है, जिसे गुणा करने पर 0, देता है a (मान लिया ); इस प्रकार, शून्य से विभाजन अपरिभाषित (गणित) है। चूँकि कोई भी संख्या शून्य से गुणा करने पर शून्य होती है, व्यंजक अपरिभाषित भी है; जब यह एक सीमा (गणित) का रूप है, तो यह एक अनिश्चित रूप 0/0 है। ऐतिहासिक रूप से, मान निर्दिष्ट करने की गणितीय असंभवता के लिए सबसे पहले प्रस्तुत किए गए संदर्भों में से एक एंग्लो-आयरिश दार्शनिक जॉर्ज बर्कले की 1734 में विश्लेषक (निर्गत राशियों के गूढ लेखन) में अतिसूक्ष्म कलन की पर्यवेक्षण में निहित है।[1]

गणितीय संरचनाएं हैं जिनमें कुछ के लिए परिभाषित किया गया है a जैसे कि रीमैन क्षेत्र (विस्तारित जटिल तल का गणितीय मॉडल) और प्रक्षेपित रूप से विस्तारित वास्तविक रेखा; हालांकि, ऐसी संरचनाएं अंकगणित (क्षेत्र के सिद्धांत) के हर सामान्य नियम को संतुष्ट नहीं करती हैं।

अभिकलन में, क्रमानुदेश त्रुटि शून्य से विभाजित करने के प्रयास के परिणामस्वरूप हो सकती है। क्रमानुदेश परिवेश और संख्या के प्रकार (उदाहरण के लिए चल-बिंदु, पूर्णांक) के आधार पर शून्य से विभाजित होने पर, यह विद्युत और इलेक्ट्रॉनिक अभियांत्रिकी संस्थान 754 चल बिन्दु मानक द्वारा, धनात्मक या ऋणात्मक अनंतता आक्षेप उत्पन्न कर सकता है, और त्रुटि संदेश उत्पन्न कर सकता है जिससे क्रमानुदेश (प्रोग्राम) विशेष गैर-संख्या मान या क्रैश में परिणाम मे समाप्त करने का कारण बनता है।।[2]

प्रारंभिक अंकगणित

जब विभाजन को प्रारंभिक अंकगणितीय स्तर पर समझाया जाता है, तो इसे प्रायः वस्तुओं के समूह को समान भागों में विभाजित करने के रूप में माना जाता है। उदाहरण के रूप में, दस कुकीज़ रखने पर विचार करें, और इन कुकीज़ को मेज पर पाँच लोगों के बीच समान रूप से वितरित किया जाना है। प्रत्येक व्यक्ति को कुकीज़ प्राप्त होंगी। इसी तरह यदि दस कुकीज़ हैं, और मेज पर केवल एक व्यक्ति है, तो वह व्यक्ति कुकीज़ प्राप्त करेगा।

तो, शून्य से विभाजित करने के लिए, प्रत्येक व्यक्ति को प्राप्त होने वाली कुकीज़ की संख्या क्या है जब 10 कुकीज़ समान रूप से 0 लोगों के बीच मेज पर वितरित की जाती हैं? समस्या को स्पष्ट करने के लिए कुछ शब्दों को प्रश्न में इंगित किया जा सकता है। इस प्रश्न के साथ समस्या यह है कि जब किसी को भी 10 कुकीज वितरण का कोई तरीका नहीं है। इसलिए, कम से कम प्राथमिक अंकगणित में अर्थहीन या अपरिभाषित कहा जाता है।

यदि 5 कुकीज़ और 2 लोग हैं, तो समस्या "समान रूप से वितरित" में है। 5 वस्तुओ के किसी भी पूर्णांक विभाजन में 2 भागों में, विभाजन के किसी एक भाग में दूसरे की तुलना में अधिक तत्व होंगे या शेष होगा ( 5/2 = 2 r1 के रूप में लिखा गया)। या 5 कुकीज़ और 2 लोगों की समस्या को एक कुकीज को आधा काट कर समाधित किया जा सकता है, जो भिन्नों (5/2 = 2+1/2) के विचार को प्रस्तुत करता है। दूसरी ओर, 5 कुकीज़ और 0 लोगों के साथ समस्या को किसी भी तरह से समाधित नहीं किया जा सकता है जो "विभाजन" के अर्थ को सुरक्षित रखता है |

प्रारंभिक बीजगणित में, विभाजन को शून्य से देखने का अन्य तरीका यह है कि विभाजन को सदैव गुणन का उपयोग करके जांचा जा सकता है। इसका विचार करके 10/0 उपरोक्त उदाहरण, व्यवस्थापन x = 10/0, यदि x बराबर दस को शून्य से विभाजित किया जाता है, तो x गुणा शून्य दस के बराबर होता है, लेकिन ऐसा कोई x नहीं है,अतिरिक्त से गुणा करने पर, दस (या शून्य के अतिरिक्त कोई भी संख्या) देता है। यदि, x के स्थान पर = 10/0, x = 0/0, तब प्रत्येक x प्रश्न को पूरा करता है कि किस संख्या x को शून्य से गुणा करने पर शून्य प्राप्त होता है?

प्रारंभिक प्रयास

ब्रह्मगुप्त का ब्रह्मस्फुटसिद्धान्त (सी. 598-668) 0 (संख्या) को अपने आप में संख्या के रूप में मानने और शून्य से संबंधित संक्रियाओं को परिभाषित करने वाला सबसे पहला मूलग्रंथ है।[3] लेखक अपने ग्रंथों में शून्य से विभाजन की व्याख्या नहीं कर सके: उनकी परिभाषा को आसानी से बीजगणितीय असावधानी की ओर ले जाने के लिए सिद्ध किया जा सकता है। ब्रह्मगुप्त के अनुसार,

शून्य से विभाजित होने पर एक धनात्मक या ऋणात्मक संख्या शून्य के साथ एक अंश है। शून्य को ऋणात्मक या धनात्मक संख्या से विभाजित करने पर या तो शून्य होता है या अंश के रूप में शून्य के साथ एक अंश के रूप में व्यक्त किया जाता है और परिमित मात्रा हर के रूप में होती है। शून्य को शून्य से विभाजित करने पर शून्य होता है।

830 में महावीर ने अपनी पुस्तक गणित सारा संग्रह में ब्रह्मगुप्त द्वारा की गई गलती को सुधारने का असफल प्रयास किया: "शून्य से विभाजित होने पर एक संख्या अपरिवर्तित रहती है।"[3]


बीजगणित

प्राथमिक अंकगणित में कुछ प्रतिबंधों के साथ पूर्ण संख्याओं (धनात्मक पूर्णांकों) पर लागू चार आधारिक संरचना संक्रियाएँ - जोड़, व्यवकलन, गुणा और भाग - को उन संख्याओं के क्षेत्र के विस्तार का समर्थन करने के लिए रूपरेखा के रूप में उपयोग किया जाता है, जिन पर वे लागू होते हैं। उदाहरण के लिए, किसी भी पूर्ण संख्या को दूसरे से घटाना संभव बनाने के लिए संख्याओं के क्षेत्र को पूर्णांकों के पूरे समुच्चय तक विस्तारित किया जाना चाहिए ताकि नकारात्मक पूर्णांकों को सम्मिलित किया जा सके। इसी तरह, किसी भी पूर्णांक के किसी अन्य द्वारा विभाजन का समर्थन करने के लिए, संख्याओं के क्षेत्र को परिमेय संख्याओं तक विस्तारित करने के समय संख्या प्रणाली के इस क्रमिक विस्तार के समय, यह सुनिश्चित करने के लिए ध्यान रखा जाता है कि "विस्तारित संक्रिया", जब बड़ी संख्याओं पर लागू किया जाता है, तो अलग-अलग परिणाम उत्पन्न नहीं होते हैं। साधारणतः, चूंकि पूर्ण संख्या व्यवस्थापन में शून्य से विभाजन का कोई अर्थ नहीं है (अपरिभाषित है), यह सत्य बना रहता है क्योंकि व्यवस्थापन वास्तविक या सम्मिश्र संख्या तक विस्तृत होती है।

जैसे-जैसे संख्याओं का क्षेत्र बढ़ता जाता है इन परिचालनों को लागू किया जा सकता है और विस्तार करता है, संक्रियाों को देखने के तरीके में भी परिवर्तन होते हैं। उदाहरण के लिए, पूर्णांकों के क्षेत्र में, व्यवकलन को मूल संक्रिया नहीं माना जाता है क्योंकि इसे सांकेतिक संख्याओं के जोड़ से परिवर्तित किया जा सकता है ।[4] इसी तरह, जब परिमेय संख्याओं को सम्मिलित करने के लिए संख्याओं के क्षेत्र का विस्तार होता है, तो विभाजन को कुछ परिमेय संख्याओं के गुणन से परिवर्तित कर दिया जाता है। इस दृष्टिकोण के परिवर्तन को ध्यान में रखते हुए, प्रश्न, हम शून्य से भाग क्यों नहीं दे सकते? एक परिमेय संख्या का हर शून्य क्यों नहीं हो सकता है? इस संशोधित प्रश्न का परिशुद्ध उत्तर देने के लिए परिमेय संख्याओं की परिभाषा की ध्यानपूर्वक से जाँच करने की आवश्यकता है।

वास्तविक संख्याओं के क्षेत्र के निर्माण के आधुनिक दृष्टिकोण में, परिमेय संख्या विकास में मध्यवर्ती चरण के रूप में प्रकट होती है जो समुच्चय सिद्धांत पर आधारित होती है। सबसे पहले, प्राकृतिक संख्याएँ (शून्य सहित) स्वयंसिद्ध आधार पर स्थापित की जाती हैं जैसे कि पियानों की अभिगृहीत प्रणाली और फिर इसे पूर्णांकों के वलय तक विस्तारित किया जाता है। अगले चरण परिमेय संख्याओं को इस बात को ध्यान में रखते हुए परिभाषित करना है कि यह केवल उन समुच्चयों और संक्रियाओं का उपयोग करके किया जाना चाहिए जो पहले ही स्थापित किए जा चुके हैं, अर्थात् योग, गुणन और पूर्णांकों के क्रमित युग्मो के समुच्चय से प्रारंभ करते हुए, {(a, b)} साथ b ≠ 0, द्वारा इस समुच्चय पर द्विआधारी संबंध को परिभाषित करता है (a, b) ≃ (c, d) और केवल यदि ad = bc है। इस संबंध को तुल्यता संबंध के रूप में दिखाया गया है और इसके तुल्यता वर्गो को परिमेय संख्याओं के रूप में परिभाषित किया गया है। यह औपचारिक प्रमाण में है कि यह संबंध तुल्यता संबंध है इसकी आवश्यकता है कि दूसरा निर्देशांक शून्य नहीं है (संक्रामिता संबंध को सत्यापित करने के लिए) की आवश्यकता है।[5][6][7]

उपरोक्त व्याख्या कई उद्देश्यों के लिए बहुत संक्षिप्त और तकनीकी हो सकती है, लेकिन यदि कोई परिमेय संख्याओं के स्थिति और गुणों को मानता है, जैसा कि सामान्य रूप से प्रारंभिक गणित में किया जाता है, तो "कारण" कि शून्य से विभाजन की स्वीकृति नहीं है, अतः अवलोकन से अप्रत्यक्ष है। तथापि, इस व्यवस्थापन में (गैर-परिशुद्ध) प्रामाणिकता दी जा सकती है।

यह उस संख्या प्रणाली के गुणों से अनुसरण करता है जिसका हम उपयोग कर रहे हैं (अर्थात, पूर्णांक, परिमेय, वास्तविक, आदि), यदि b ≠ 0 फिर समीकरण a/b = c के बराबर है a = b × c. ये मानते हुए a/0 एक संख्या है c, तो यह होना ही चाहिए a = 0 × c = 0 हालाँकि, एकल संख्या c तब समीकरण 0 = 0 × c द्वारा निर्धारित किया जाना होगा, लेकिन प्रत्येक संख्या इस समीकरण को पूरा करती है, इसलिए हम इसके लिए संख्यात्मक मान 0/0 निर्दिष्ट नहीं कर सकते है।[8]


गुणा के व्युत्क्रम के रूप में विभाजन

बीजगणित में विभाजन (गणित) की व्याख्या करने वाली अवधारणा यह है कि यह गुणन का व्युत्क्रम है। उदाहरण के लिए,[9]

तब से 2 वह मान है जिसके लिए अज्ञात मात्रा है
क्या सत्य है। लेकिन व्यंजक
में अज्ञात मात्रा के लिए मान खोजने की आवश्यकता है
लेकिन किसी भी संख्या का गुणा 0 है 0 और इसलिए ऐसी कोई संख्या नहीं है जो समीकरण को समाधित कर सके।

व्यंजक

में अज्ञात मात्रा के लिए मान खोजने की आवश्यकता है
पुनः, किसी भी संख्या का गुणा 0 है और 0 इसलिए इस बार प्रत्येक संख्या समीकरण को समाधित करती है इसके अतिरिक्त कि संख्या को मान 0/0 के रूप में लिया जा सकता है।

सामान्य रूप से, एकल मान को उस अंश के लिए निर्दिष्ट नहीं किया जा सकता है जहां भाजक है 0 इसलिए मान अस्वीकृत है।

दोष

शून्य से विभाजन की स्वीकृति अप्रतिरोध्य कारण यह है कि, यदि इसकी स्वीकृति दी जाती, तो कई निरर्थक परिणाम (अर्थात,त्रुटि) उत्पन्न होते है। संख्यात्मक मात्राओं के साथ काम करते समय यह निर्धारित करना आसान होता है कि कब शून्य से विभाजित करने का अनुपयुक्त प्रयास किया जा रहा है। उदाहरण के लिए, निम्नलिखित गणना पर विचार करें।

अभिगृहिताओ के साथ:

निम्नलिखित सत्य है:
दोनों पक्षों को शून्य से भाग प्राप्त होता है:
सरलीकृत, यह प्रतिफल:
यहाँ दोष यह धारणा है कि 0 को 0 से विभाजित करना उपयुक्त संक्रिया है जिसमें समान गुण होते हैं जो किसी अन्य संख्या से विभाजित होते हैं।

हालांकि, बीजगणितीय तर्क में विभाजन को शून्य से छिपाना संभव है,[3] जिसके परिणामस्वरूप अमान्य प्रमाण हैं, उदाहरण के लिए, 1 = 2 जैसे निम्नलिखित:[10]

मान लीजिए 1 = x.

प्राप्त करने के लिए x से गुणा करें

प्राप्त करने के लिए प्रत्येक पक्ष से 1 घटाएं
द्वारा दोनों पक्षों को विभाजित x − 1
जो सरल करता है
लेकिन, चूंकि x = 1,
और इसलिए

शून्य से प्रच्छन्न विभाजन तब होता है जब x − 1 = 0 जब x = 1 होता है।

विश्लेषण

विस्तारित वास्तविक रेखा

पहली दृष्टि में a/b के फलन की सीमा पर विचार करके a/0 को परिभाषित करना संभव लगता है क्योंकि b 0 तक पहुंचता है।

किसी भी धनात्मक a के लिए, दाएँ से सीमा है

हालाँकि, बाएँ से सीमा है
और इसलिए अपरिभाषित है ऋणात्मक a के लिए सीमा भी अपरिभाषित है)।

इसके अतिरिक्त, 0/0 की कोई स्पष्ट परिभाषा नहीं है जिसे किसी अनुपात की सीमा पर विचार करके प्राप्त किया जा सकता है। सीमा

सम्मिलित नहीं होना। रूप की सीमाएँ
जिसमें f(x) और g(x) दोनों 0 तक पहुंचते हैं जैसे x 0 तक पहुंचता है, विशेष फलन f और g के आधार पर, किसी भी वास्तविक या अनंत मान के बराबर हो सकता है, या बिल्कुल भी सम्मिलित नहीं हो सकता है।

उदाहरण के लिए, विचार करें:

यह प्रारंभिक रूप से अनिश्चित प्रतीत होता है। हालाँकि:
और इसलिए परिसीमा सम्मिलित है, और के बराबर है

ये और इसी तरह के अन्य तथ्य बताते हैं कि व्यंजक सीमा के रूप में अच्छी तरह से परिभाषित नहीं किया जा सकता है।

औपचारिक संक्रिया

गणना का परिणाम अच्छी तरह से परिभाषित है या नहीं, इस पर विचार किए बिना अंकगणित के नियमों का उपयोग करके औपचारिक गणना की जाती है। इस प्रकार, कभी-कभी a/0, जहां a ≠ 0, के रूप में विचार उपयोगी होता है। संदर्भ के आधार पर यह अनंत या तो धनात्मक, ऋणात्मक या असंकेतिक हो सकता है। उदाहरण के लिए, औपचारिक रूप से:

किसी भी औपचारिक गणना के साथ, अमान्य परिणाम प्राप्त हो सकते हैं। तार्किक रूप से स्थूल (औपचारिक के विपरीत) संगणना केवल उसी पर जोर देगी
चूंकि एकपक्षीय सीमाएं अलग हैं, वास्तविक संख्या के मानक संरचना में द्विपक्षीय सीमा सम्मिलित नहीं है। इसके अतिरिक्त, अंश 1/0 को विस्तारित वास्तविक रेखा में अपरिभाषित छोड़ दिया गया है, इसलिए यह और
अर्थहीन व्यंजक (गणित) हैं।

वास्तविक रूप से विस्तारित वास्तविक रेखा

समुच्चय प्रक्षेप्य रूप से विस्तारित वास्तविक रेखा है, जो वास्तविक रेखा का एक-बिंदु संघनन है। यहां का अर्थ है एक असांकेतिक अनंतता या अनंत पर बिंदु, अनंत मात्रा जो न तो धनात्मक है और न ही ऋणात्मक। यह मात्रा पूरा करती है, जो इस संदर्भ में आवश्यक है। इस संरचना में, अशून्य के लिए a परिभाषित किया जा सकता है और जब a क्या नहीं है यह त्रिकोणमिति के स्पर्शरेखा फलन और को स्पर्श फलन की सीमा को देखने का स्वाभाविक तरीका है: tan(x) अनंत पर एकल बिंदु की ओर बढ़ता है क्योंकि x किसी भी दिशा से +π/2 या π/2 तक पहुंचता है।

यह परिभाषा कई परिणामों की ओर ले जाती है। हालांकि, परिणामी बीजगणितीय संरचना क्षेत्र (गणित) नहीं है, और एक की तरह व्यवहार करने की उपेक्षा नहीं की जानी चाहिए। उदाहरण के लिए, वास्तविक रेखा के इस विस्तार में अपरिभाषित है।

रीमैन क्षेत्र

समुच्चय रीमैन क्षेत्र है, जो जटिल विश्लेषण में प्रमुख महत्व रखता है। यहां जटिल अनंतता का प्रतिनिधित्व करता है, जो अनंत पर एक बिंदु भी है। यह समुच्चय अनुमानित रूप से विस्तारित वास्तविक रेखा के अनुरूप है, इसके अतिरिक्त कि यह सम्मिश्र संख्याओ के क्षेत्र (गणित) पर आधारित है। रीमैन क्षेत्र में, और , लेकिन , , और अपरिभाषित हैं।

उच्च गणित

हालांकि शून्य से विभाजन को वास्तविक संख्याओं और पूर्णांकों के साथ बुद्धिमत्ता से परिभाषित नहीं किया जा सकता है, लेकिन अन्य गणितीय संरचनाओं में इसे या इसी तरह के संक्रिया को निरंतर परिभाषित करना संभव है।

अमानक विश्लेषण

अतिवास्तविक संख्या और वास्तविक संख्या में, शून्य से विभाजन अभी भी असंभव है, लेकिन गैर-शून्य अपरिमेय द्वारा विभाजन संभव है।

वितरण सिद्धांत

बंटन (गणित) में फलन का विस्तार किया जा सकता है वास्तविक संख्याओं के पूरे स्थान पर एक वितरण के लिए (कॉची प्रमुख मूल्यों का उपयोग करके)। हालाँकि, x = 0 पर इस वितरण का "मान" पूछने का कोई अर्थ नहीं है; एक परिष्कृत उत्तर वितरण के विलक्षण समर्थन को दर्शाता है।

रेखीय बीजगणित

मैट्रिक्स (गणित) बीजगणित (या सामान्य रूप से रेखीय बीजगणित) में, a/b = ab+ समुच्चय करके छद्म-विभाजन को परिभाषित किया जा सकता है, जिसमें b+ b के छद्म व्युत्क्रम का प्रतिनिधित्व करता है अतः यह सिद्ध किया जा सकता है कि यदि b-1 सम्मिलित है, तो b+ = b-1. यदि b 0 के बराबर है, तो b+ = 0 है।

अमूर्त बीजगणित

अमूर्त बीजगणित में, पूर्णांक, परिमेय संख्याएँ, वास्तविक संख्याएँ, और सम्मिश्र संख्याएँ अधिक सामान्य बीजगणितीय संरचनाओं के लिए संक्षिप्त की जा सकती हैं, जैसे कि एक क्रमविनिमेय वलय, जो एक गणितीय संरचना है जहाँ जोड़, व्यवकलन और गुणा व्यवहार करते हैं जैसा वे करते हैं अधिक परिचित संख्या प्रणालियों में, लेकिन विभाजन को परिभाषित नहीं किया जा सकता है। गुणक व्युत्क्रम को क्रमविनिमेय वलय से जोड़ने को स्थानीयकरण (क्रमविनिमेय बीजगणित) कहा जाता है। हालाँकि, शून्य पर प्रत्येक क्रमविनिमेय वलय का स्थानीयकरण साधारण वलय है, जहाँ , इसलिए आसाधारण क्रमविनिमेय वलयों में शून्य पर व्युत्क्रम नहीं होते हैं, और इस प्रकार शून्य से विभाजन आसाधारण क्रमविनिमेय वलयों के लिए अपरिभाषित है।

तथापि, कोई भी संख्या प्रणाली जो क्रमविनिमेय वलय बनाती है, उसे संभव्यता ही कभी उपयोग की जाने वाली संरचना तक बढ़ाया जा सकता है जिसे चक्र सिद्धांत कहा जाता है जिसमें शून्य से विभाजन सदैव संभव होता है। हालाँकि, परिणामी गणितीय संरचना अब एक क्रमविनिमेय वलय नहीं है, क्योंकि अतिरिक्त जोड़ पर वितरित नहीं होता है। इसके अतिरिक्त, चक्र में, एक तत्व का विभाजन स्वयं गुणक पहचान तत्व में नहीं होता है , और यदि मूल प्रणाली अभिन्न प्रक्षेत्र थी, तो चक्र में गुणन का परिणाम निरस्तीकरण करने वाले अर्धसमूह में नहीं होता है।

मानक अंकगणित पर लागू होने वाली अवधारणाएं वलय (गणित) और क्षेत्र (गणित) जैसी अधिक सामान्य बीजगणितीय संरचनाओं के समान हैं। क्षेत्र में, प्रत्येक अशून्य तत्व गुणन के अंतर्गत व्युत्क्रमणीय होता है; ऊपरोक्त अनुसार, विभाजन केवल शून्य से विभाजित करने का प्रयास करते समय समस्याएं उत्पन्न करता है। यह विषम क्षेत्र में भी सत्य है (जो इस कारण से एक विभाजन वलय कहा जाता है)। हालाँकि,अन्य वलयों में अशून्य तत्वों द्वारा विभाजन भी समस्याएँ उत्पन्न कर सकता है। उदाहरण के लिए, पूर्णांक मॉड 6 की वलय Z/6Z व्यंजक का अर्थ समीकरण का समाधित x होना चाहिए लेकिन वलय Z/6Z में, 2 शून्य भाजक है। इस समीकरण के दो भिन्न समाधित हैं, x = 1 और x = 4, इसलिए व्यंजक परिभाषित और अपरिभाषित है।

क्षेत्र सिद्धांत में, व्यंजक औपचारिक व्यंजक ab-1 के लिए केवल आशुलिपि है, जहां b−1 b का गुणक प्रतिलोम है। चूँकि क्षेत्र अभिगृहीत केवल अशून्य तत्वों के लिए ऐसे व्युत्क्रमों के स्थिति की प्रत्याभूत देते हैं, इस व्यंजक का कोई अर्थ नहीं है जब b शून्य है। आधुनिक ग्रंथ, जो क्षेत्रों को विशेष प्रकार की वलय के परिभाषित करते हैं क्षेत्र 0 ≠ 1, में स्वयंसिद्ध सम्मिलित है या इसके समतुल्य के लिए ताकि शून्य वलय को क्षेत्र से बाहर रखा जा सके। शून्य वलय में, शून्य से विभाजन संभव है, जो दर्शाता है कि क्षेत्र में शून्य से विभाजन को बाहर करने के लिए अन्य क्षेत्र स्वयंसिद्ध पर्याप्त नहीं हैं।

कंप्यूटर अंकगणित

अधिकांश गणनायंत्र, जैसे कि यह टेक्सस उपकरण TI-86, निष्पादन को रोक देगा और एक त्रुटि संदेश प्रदर्शित करेगा जब उपयोगकर्ता या चल रहा क्रमानुदेश शून्य से विभाजित करने का प्रयास करेगा।
एंड्रॉइड (प्रचालन तंत्र) 2.2.1 के गणनायंत्र ऐप पर शून्य से विभाजन अनंत का प्रतीक दिखाता है।

विद्युत और इलेक्ट्रॉनिक अभियांत्रिकी संस्थान चल-बिन्दु इकाई, लगभग सभी आधुनिक चल-बिन्दु श्रेणी द्वारा समर्थित, निर्दिष्ट करता है कि प्रत्येक चल-बिन्दु अंकगणितीय संक्रिया, शून्य से विभाजन सहित, अच्छी तरह से परिभाषित परिणाम है। मानक सांकेतिक शून्य, साथ ही अनंत और एनएएन (संख्या नहीं) का समर्थन करता है। दो शून्य हैं: +0 (धनात्मक शून्य) और -0 (ऋणात्मक शून्य) और यह विभाजित करते समय किसी भी अस्पष्टता को दूर करता है। विद्युत और इलेक्ट्रॉनिक अभियांत्रिकी संस्थान 754 अंकगणित में, a ÷ +0 धनात्मक अनन्तता है जब a धनात्मक है, ऋणात्मक अनन्तता जब a ऋणात्मक है, और एनएएन जब a = ±0 है। इसके अतिरिक्त -0 (संख्या) से विभाजित करने पर अनंत चिह्न परिवर्तित हो जाते हैं।

इस परिभाषा का उपयुक्तता अंकगणितीय चल-बिन्दु के स्थिति में परिणाम के चिह्न को संरक्षित करना है।[11] उदाहरण के लिए, एकल-परिशुद्धता संगणना में 1/(x/2), जहां x = ±2−149, परिकलन x/2 चल-बिन्दुि होता है और चिह्न अनुकूल x के साथ ±0 उत्पन्न करता है, और परिणाम चिह्न अनुकूल x के साथ ±∞ x ​​होगा। यह चिह्न परिशुद्ध परिणाम ±2150 के चिह्न से तुलना करना, लेकिन परिशुद्ध परिणाम का परिमाण प्रतिनिधित्व करने के लिए बहुत बड़ा है, इसलिए चल-बिन्दु इंगित करने के लिए अनंत का उपयोग सामान्य रूप से है।

शून्य से पूर्णांक विभाजन को समानरूप से चल-बिन्दु से अलग तरीके से नियंत्रित किया जाता है क्योंकि परिणाम के लिए कोई पूर्णांक प्रतिनिधित्व नहीं होता है। जब एक पूर्णांक को शून्य से विभाजित करने का प्रयास किया जाता है तो कुछ संसाधक अपवाद प्रबंधन उत्पन्न करते हैं, हालांकि अन्य जारी रहेंगे और विभाजन के लिए दोषपूर्ण परिणाम उत्पन्न करेंगे। परिणाम इस बात पर निर्भर करता है कि विभाजन कैसे कार्यान्वित किया जाता है, या तो शून्य हो सकता है, या कभी-कभी सबसे बड़ा संभावित पूर्णांक हो सकता है।

शून्य से विभाजन के लिए किसी भी मान को निर्दिष्ट करने के अनुचित बीजगणितीय परिणामों के कारण, कई कंप्यूटर क्रमानुदेश भाषाएं (गणनायंत्र द्वारा उपयोग की जाने वाली भाषाओं सहित) संक्रिया के निष्पादन को स्पष्ट रूप से मना करती हैं और समय से पहले क्रमानुदेश को रोक सकती हैं जो इसे करने का प्रयास करती है, कभी-कभी शून्य त्रुटि से विभाजन को प्रस्तावित करती है। इन स्थितियों में, यदि शून्य से विभाजन के लिए कुछ विशेष व्यवहार वांछित है, तो स्थिति (उदाहरण के लिए, यदि कथन का उपयोग करके) का स्पष्ट रूप से परीक्षण किया जाना चाहिए। कुछ क्रमानुदेश (विशेष रूप से वे जो चल-बिन्दु अंकगणित का उपयोग करते हैं, जहां कोई समर्पित चल-बिन्दु हार्डवेयर उपलब्ध नहीं है) विद्युत और इलेक्ट्रॉनिक अभियांत्रिकी संस्थान मानक के समान व्यवहार का उपयोग करेंगे, बड़े धनात्मक और ऋणात्मक संख्याओं का उपयोग करके अनन्तता का अनुमान लगाएंगे। कुछ क्रमानुदेश भाषाओं में, अपरिभाषित व्यवहार में शून्य परिणामों से विभाजित करने का प्रयास। रेखा-चित्रीय क्रमानुदेश भाषाएँ भिन्न (प्रोग्राम भाषा) शून्य 2.0 और 3.0 का उपयोग कई स्कूलों में किया जाता है जो भाग के संकेत के आधार पर अनंत या अनंता प्रतिगमन करती है।

दो के अनुपूरण अंकगणित में, सबसे छोटे सांकेतिक पूर्णांक को -1 से विभाजित करने के प्रयासों में समान समस्याएं होती हैं, और स्पष्ट त्रुटि स्थितियों से लेकर अपरिभाषित व्यवहार तक, समाधानों की समान श्रेणी के साथ नियंत्रित किया जाता है।

अधिकांश गणनायंत्र या तो एक त्रुटि हैं या बताते हैं कि 1/0 अपरिभाषित है; हालांकि, कुछ टेक्सास उपकरण और हेवलेट पैकर्ड ग्राफिंग गणनायंत्र मूल्यांकन (1/0)2 से ∞ करेंगे।

माइक्रोसॉफ्ट गणित और गणित वापसी जटिल 1/0 के लिए। मेपल और सेजमैथ 1/0 के लिए एक त्रुटि संदेश देते हैं, और 1/0.0 के लिए अनंत (0.0 इन प्रणालियों को बीजगणितीय अंकगणित के अतिरिक्त चल-बिन्दु अंकगणित का उपयोग करने के लिए कहते हैं)।

कुछ आधुनिक गणनायंत्र विशेष स्थितियों में शून्य से विभाजन की स्वीकृति देते हैं, जहां यह छात्रों के लिए उपयोगी होगा और संभवतः गणितज्ञों द्वारा संदर्भ में समझा जाएगा। कुछ गणनायंत्र, संयोजित डेस्मोस गणनायंत्र एक उदाहरण है जो चाप-स्पर्शरेखा (1/0) की स्वीकृति देंता है। छात्रों को प्रायः सिखाया जाता है कि व्युत्क्रम कोटिस्पर्श फलन, व्युत्क्रम त्रिकोणमितीय फलन, की गणना व्युत्क्रम के चापस्पर्शज्या को लेकर की जानी चाहिए, और इसलिए गणनायंत्र स्वीकृति स्पर्शज्या (1/0) को उत्पादन देने की स्वीकृति दे सकता है , जो चाप स्पर्शरेखा 0 का सही मान है। गणितीय प्रामाणिकता यह है कि चाप स्पर्शरेखा 1/x की x के शून्य तक जाने की सीमा है।


ऐतिहासिक दुर्घटनाएँ

  • 21 सितंबर, 1997 को, यूएसएस यॉर्कटाउन (सीजी-48) पर "दूरस्थ डेटा आधार प्रबंधक" में शून्य त्रुटि से विभाजन ने नेटवर्क पर सभी युक्तियो को नीचे लाया, जिससे जहाज की प्रणोदन प्रणाली विफल हो गई।[12][13]


यह भी देखें

संदर्भ

टिप्पणियाँ

  1. Cajori, Florian (1929), "Absurdities due to division by zero: An historical note", The Mathematics Teacher, 22 (6): 366–368, doi:10.5951/MT.22.6.0366, JSTOR 27951153.
  2. "Perl BigInt documentation". Perl::doc. Perl 5 Porters. Archived from the original on 26 September 2019. Retrieved 1 March 2020.
  3. 3.0 3.1 3.2 Kaplan, Robert (1999). The Nothing That Is: A Natural History of Zero. New York: Oxford University Press. pp. 68–75. ISBN 978-0-19-514237-2.
  4. Klein 1925, p. 24
  5. Schumacher 1996, p. 149
  6. Hamilton 1982, p. 19
  7. Henkin et al. 2012, p. 292
  8. Bunch 1997, p. 14
  9. Prindle, Anthony; Prindle, Katie (2009). E-Z Math (revised ed.). Barron's Educational Series. p. 35. ISBN 978-0-7641-4132-4. Extract of page 35
  10. Bunch 1997, p. 15
  11. Cody, W. J. (March 1981). "Analysis of Proposals for the Floating-Point Standard". Computer. 14 (3): 65. doi:10.1109/C-M.1981.220379. S2CID 9923085. With appropriate care to be certain that the algebraic signs are not determined by rounding error, the affine mode preserves order relations while fixing up overflow. Thus, for example, the reciprocal of a negative number which underflows is still negative.
  12. "Sunk by Windows NT". Wired News. 1998-07-24.
  13. William Kahan (14 October 2011). "Desperately Needed Remedies for the Undebuggability of Large Floating-Point Computations in Science and Engineering" (PDF).


स्रोत

  • Bunch, Bryan (1997) [1982], Mathematical Fallacies and Paradoxes, Dover, ISBN 978-0-486-29664-7
  • Klein, Felix (1925), Elementary Mathematics from an Advanced Standpoint / Arithmetic, Algebra, Analysis, translated by Hedrick, E. R.; Noble, C. A. (3rd ed.), Dover
  • Hamilton, A. G. (1982), Numbers, Sets, and Axioms, Cambridge University Press, ISBN 978-0521287616
  • Henkin, Leon; Smith, Norman; Varineau, Verne J.; Walsh, Michael J. (2012), Retracing Elementary Mathematics, Literary Licensing LLC, ISBN 978-1258291488
  • पैट्रिक सपेस 1957 (1999 डोवर संस्करण), लॉजिक का परिचय, डोवर प्रकाशन, इंक, माइनोला, न्यूयॉर्क। ISBN 0-486-40687-3 (पीबीके।)। यह पुस्तक प्रिंट में है और आसानी से उपलब्ध है। सपेस की §8.5 जीरो द्वारा विभाजन की समस्या इस तरह से शुरू होती है: गणित में भी, सभी संभव संसारों में सर्वश्रेष्ठ के लिए सब कुछ नहीं है, प्राथमिक सिद्धांत में विभाजन के संचालन को परिभाषित करने की परेशान करने वाली समस्या से अच्छी तरह से चित्रित किया गया है। अंकगणित (पृष्ठ 163)। अपने §8.7 'ज़ीरो द्वारा विभाजन के लिए पांच दृष्टिकोण' में उन्होंने टिप्पणी की कि ...कोई समान रूप से संतोषजनक समाधान नहीं है (पृष्ठ 166)
  • Schumacher, Carol (1996), Chapter Zero : Fundamental Notions of Abstract Mathematics, Addison-Wesley, ISBN 978-0-201-82653-1
  • चार्ल्स सीफ 2000, ज़ीरो: द बायोग्राफी ऑफ़ ए डेंजरस आइडिया, पेंगुइन बुक्स, एनवाई, ISBN 0-14-029647-6 (पीबीके।)। यह पुरस्कार विजेता पुस्तक बहुत ही सुलभ है। (कुछ के लिए) एक घृणित धारणा और दूसरों के लिए एक सांस्कृतिक संपत्ति के आकर्षक इतिहास के साथ, वर्णन करता है कि गुणा और विभाजन के संबंध में शून्य का गलत उपयोग कैसे किया जाता है।
  • अल्फ्रेड टार्स्की 1941 (1995 डोवर संस्करण), इंट्रोडक्शन टू लॉजिक एंड टू द मेथोडोलॉजी ऑफ डिडक्टिव साइंसेज, डोवर पब्लिकेशन, इंक, माइनोला, न्यूयॉर्क। ISBN 0-486-28462-X (पीबीके।)। तर्स्की की §53 परिभाषाएं जिनकी परिभाषा में पहचान चिह्न शामिल है, चर्चा करती है कि गलतियां कैसे की जाती हैं (कम से कम शून्य के संबंध में)। वह अपना अध्याय समाप्त करता है (इस बल्कि कठिन समस्या की चर्चा [परिभाषा को संतुष्ट करने वाली एक संख्या] को यहां छोड़ दिया जाएगा। *) (पृष्ठ 183)। * व्यायाम #24 (पृष्ठ 189) की ओर इशारा करता है जिसमें वह निम्नलिखित का प्रमाण मांगता है: खंड 53 में, संख्या '0' की परिभाषा एक उदाहरण के माध्यम से बताई गई थी। यह सुनिश्चित करने के लिए कि यह परिभाषा किसी विरोधाभास की ओर नहीं ले जाती है, इसके पहले निम्नलिखित प्रमेय होना चाहिए: बिल्कुल एक संख्या x का अस्तित्व है, किसी भी संख्या y के लिए, एक के पास: y + x = y


आगे की पढाई