स्थानीय रूप से एकीकृत कार्य

From alpha
Jump to navigation Jump to search

गणित में, एक स्थानीय रूप से एकीकृत फ़ंक्शन (कभी-कभी इसे स्थानीय रूप से सारांशित फ़ंक्शन भी कहा जाता है)[1] एक फ़ंक्शन (गणित) है जो परिभाषा के अपने डोमेन के प्रत्येक कॉम्पैक्ट उपसमुच्चय पर पूर्णांकीय है (इसलिए इसका अभिन्न अंग परिमित है)। ऐसे फ़ंक्शंस का महत्व इस तथ्य में निहित है कि उनका कार्य स्थान Lp स्पेस के समान हैLp रिक्त स्थान, लेकिन इसके सदस्यों को अपने डोमेन की सीमा पर अपने व्यवहार पर किसी भी विकास प्रतिबंध को पूरा करने की आवश्यकता नहीं है (यदि डोमेन असीमित है तो अनंत पर): दूसरे शब्दों में, स्थानीय रूप से एकीकृत कार्य डोमेन सीमा पर मनमाने ढंग से तेजी से बढ़ सकते हैं, लेकिन अभी भी सामान्य एकीकृत कार्यों के समान ही प्रबंधनीय हैं।

परिभाषा

मानक परिभाषा

Definition 1.[2] होने देना Ω यूक्लिडियन अंतरिक्ष में एक खुला सेट बनें और f : Ω → एक लेब्सेग माप मापने योग्य फ़ंक्शन बनें। अगर f पर Ω इस प्रकार कि

यानी इसका लेब्सग इंटीग्रल सभी कॉम्पैक्ट सेट पर सीमित है K का Ω,[3] तब f को स्थानीय रूप से एकीकृत कहा जाता है। ऐसे सभी फलनों का समुच्चय (गणित) द्वारा दर्शाया जाता है L1,loc(Ω):

कहाँ के एक कार्य के प्रतिबंध को दर्शाता है f सेट पर K.

स्थानीय रूप से एकीकृत फ़ंक्शन की शास्त्रीय परिभाषा में केवल माप सिद्धांत और टोपोलॉजिकल स्पेस शामिल है[4] अवधारणाओं और एक टोपोलॉजिकल माप स्थान पर जटिल संख्या | जटिल-मूल्यवान कार्यों के लिए अमूर्त पर ले जाया जा सकता है (X, Σ, μ):[5] हालाँकि, चूँकि ऐसे फ़ंक्शंस का सबसे आम अनुप्रयोग यूक्लिडियन रिक्त स्थान पर वितरण (गणित) के लिए है,[2]इसमें और निम्नलिखित अनुभागों की सभी परिभाषाएँ स्पष्ट रूप से केवल इस महत्वपूर्ण मामले से संबंधित हैं।

एक वैकल्पिक परिभाषा

Definition 2.[6] होने देना Ω यूक्लिडियन अंतरिक्ष में एक खुला सेट बनें . फिर एक फ़ंक्शन (गणित) f : Ω → ऐसा है कि

प्रत्येक परीक्षण फ़ंक्शन के लिए φC 
c
 
(Ω)
को स्थानीय रूप से एकीकृत कहा जाता है, और ऐसे कार्यों के सेट को इसके द्वारा दर्शाया जाता है L1,loc(Ω). यहाँ C 
c
 
(Ω)
सभी अपरिमित रूप से भिन्न-भिन्न फलनों के समुच्चय को दर्शाता है φ : Ω → समर्थन (गणित)#कॉम्पैक्ट समर्थन के साथ शामिल है Ω.

इस परिभाषा की जड़ें माप और एकीकरण सिद्धांत के दृष्टिकोण में हैं, जो निकोलस बॉर्बकी स्कूल द्वारा विकसित एक टोपोलॉजिकल वेक्टर स्पेस पर सतत रैखिक कार्यात्मक # सतत रैखिक कार्यात्मक की अवधारणा पर आधारित है:[7] यह वह भी है जिसे अपनाया गया है Strichartz (2003) और तक Maz'ya & Shaposhnikova (2009, p. 34).[8] यह वितरण सिद्धांत संबंधी परिभाषा मानक परिभाषा के समतुल्य है, जैसा कि निम्नलिखित प्रमेय सिद्ध करता है:

Lemma 1. एक दिया गया फ़ंक्शन f : Ω → के अनुसार स्थानीय रूप से एकीकृत है Definition 1 यदि और केवल यदि यह स्थानीय रूप से एकीकृत है Definition 2, अर्थात।


का प्रमाण Lemma 1

यदि भाग: चलो φC 
c
 
(Ω)
एक परीक्षण फ़ंक्शन बनें। यह अपने सर्वोच्च मानदंड से चरम मूल्य प्रमेय है ||φ||, मापने योग्य, और इसमें एक समर्थन (गणित)#कॉम्पैक्ट समर्थन है, आइए इसे कॉल करें K. इस तरह

द्वारा Definition 1.

केवल यदि भाग: चलो K खुले समुच्चय का एक संहत उपसमुच्चय बनें Ω. हम पहले एक परीक्षण फ़ंक्शन का निर्माण करेंगे φKC 
c
 
(Ω)
जो संकेतक फ़ंक्शन को प्रमुखता देता है χK का K. दूरी#सेट के बीच और एक बिंदु और सेट के बीच की दूरी[9] बीच में K और सीमा (टोपोलॉजी) ∂Ω पूर्णतया शून्य से बड़ा है, अर्थात

इसलिए वास्तविक संख्या चुनना संभव है δ ऐसा है कि Δ > 2δ > 0 (अगर ∂Ω खाली सेट है, ले लो Δ = ∞). होने देना Kδ और K2δ क्लोजर (टोपोलॉजी)#एक सेट नेबरहुड का क्लोजर (गणित)#मीट्रिक स्पेस में|δ-पड़ोस और 2δ-का पड़ोस K, क्रमश। वे वैसे ही कॉम्पैक्ट और संतुष्ट हैं

अब फ़ंक्शन को परिभाषित करने के लिए कनवल्शन का उपयोग करें φK : Ω → द्वारा

कहाँ φδ एक शांत करनेवाला है जिसका निर्माण मोलिफ़ायर#कंक्रीट उदाहरण का उपयोग करके किया गया है। ज़ाहिर तौर से φK इस अर्थ में गैर-नकारात्मक है φK ≥ 0, असीम रूप से भिन्न, और इसका समर्थन निहित है K2δ, विशेष रूप से यह एक परीक्षण फ़ंक्शन है। तब से φK(x) = 1 सभी के लिए xK, हमारे पास वह है χKφK.

होने देना f के अनुसार एक स्थानीय रूप से एकीकृत फ़ंक्शन बनें Definition 2. तब

चूँकि यह प्रत्येक कॉम्पैक्ट उपसमुच्चय के लिए लागू होता है K का Ω, कार्यक्रम f के अनुसार स्थानीय रूप से एकीकृत है Definition 1. □

सामान्यीकरण: स्थानीय रूप से पी-अभिन्न कार्य

Definition 3.[10] होने देना Ω यूक्लिडियन अंतरिक्ष में एक खुला सेट बनें और f : Ω → एक लेबेस्ग्यू मापने योग्य फ़ंक्शन बनें। यदि, किसी दिए गए के लिए p साथ 1 ≤ p ≤ +∞, f संतुष्ट करता है

यानी, यह का है Lp(K) सभी कॉम्पैक्ट सेट के लिए K का Ω, तब f को स्थानीय रूप से कहा जाता है p-अभिन्न या भी p-स्थानीय रूप से एकीकृत।[10]ऐसे सभी फलनों का समुच्चय (गणित) द्वारा दर्शाया जाता है Lp,loc(Ω):

स्थानीय रूप से एकीकृत कार्यों के लिए दी गई एक वैकल्पिक परिभाषा, पूरी तरह से अनुरूप, स्थानीय रूप से भी दी जा सकती है p-अभिन्न कार्य: यह इस खंड के समतुल्य भी हो सकता है और सिद्ध भी हो सकता है।[11] स्थानीय स्तर पर उनकी स्पष्ट उच्च व्यापकता के बावजूद p-अभिन्न कार्य प्रत्येक के लिए स्थानीय रूप से पूर्ण करने योग्य कार्यों का एक उपसमूह बनाते हैं p ऐसा है कि 1 < p ≤ +∞.[12]


संकेतन

विभिन्न ग्लिफ़ के अलावा जिनका उपयोग अपरकेस L के लिए किया जा सकता है,[13] स्थानीय रूप से एकीकृत कार्यों के सेट के अंकन के लिए कुछ प्रकार हैं

  • के द्वारा ग्रहण किया गया (Hörmander 1990, p. 37), (Strichartz 2003, pp. 12–13) और (Vladimirov 2002, p. 3).
  • के द्वारा ग्रहण किया गया (Maz'ya & Poborchi 1997, p. 4) और Maz'ya & Shaposhnikova (2009, p. 44).
  • के द्वारा ग्रहण किया गया (Maz'ja 1985, p. 6) और (Maz'ya 2011, p. 2).

गुण

===एलp,loc सभी p ≥ 1=== के लिए एक पूर्ण मीट्रिक स्थान है Theorem 1.[14] Lp,loc एक पूर्ण मीट्रिक स्थान है: इसकी टोपोलॉजी निम्नलिखित मीट्रिक (गणित) द्वारा उत्पन्न की जा सकती है:

कहाँ {ωk}k≥1 ऐसे गैर खाली खुले सेटों का एक परिवार है

  • ωk ⊂⊂ ωk+1, मतलब है कि ωk को कॉम्पैक्ट रूप से शामिल किया गया है ωk+1 यानी यह एक सेट है जिसमें कॉम्पैक्ट क्लोजर को उच्च सूचकांक के सेट में सख्ती से शामिल किया गया है।
  • kωk = Ω.
  • , के ∈ सेमिनोर्म का एक अनुक्रमित परिवार है, जिसे इस प्रकार परिभाषित किया गया है

सन्दर्भों में (Gilbarg & Trudinger 2001, p. 147), (Maz'ya & Poborchi 1997, p. 5), (Maz'ja 1985, p. 6) और (Maz'ya 2011, p. 2), यह प्रमेय बताया गया है लेकिन औपचारिक आधार पर सिद्ध नहीं किया गया है:[15] एक अधिक सामान्य परिणाम का पूर्ण प्रमाण, जिसमें यह भी शामिल है, पाया जाता है (Meise & Vogt 1997, p. 40).

===एलp L का एक उपस्थान है1,loc सभी p ≥ 1=== के लिए Theorem 2. हर समारोह f से संबंधित Lp(Ω), 1 ≤ p ≤ +∞, कहाँ Ω का एक खुला उपसमुच्चय है , स्थानीय रूप से एकीकृत है।

सबूत। मामला p = 1 तुच्छ है, इसलिए प्रमाण की अगली कड़ी में यह मान लिया गया है 1 < p ≤ +∞. संकेतक फ़ंक्शन पर विचार करें χK एक सघन उपसमुच्चय का K का Ω: फिर, के लिए p ≤ +∞,

कहाँ

  • q एक धनात्मक संख्या है जैसे कि 1/p + 1/q = 1 किसी प्रदत्त के लिए 1 ≤ p ≤ +∞
  • |K| कॉम्पैक्ट सेट का लेबेस्ग माप है K

फिर किसी के लिए f से संबंधित Lp(Ω), होल्डर की असमानता से, उत्पाद (गणित) K एकीकृत कार्य है यानी संबंधित है L1(Ω) और

इसलिए

ध्यान दें कि चूँकि निम्नलिखित असमानता सत्य है

प्रमेय कार्यों के लिए भी सत्य है f केवल स्थानीय स्तर के स्थान से संबंधित p-अभिन्न कार्य, इसलिए प्रमेय का तात्पर्य निम्नलिखित परिणाम से भी है।

Corollary 1. हर समारोह में , , स्थानीय रूप से एकीकृत है, i. इ। से संबंधित .

नोट: यदि का एक खुला उपसमुच्चय है वह भी परिबद्ध है, तो एक में मानक समावेशन होता है जो उपरोक्त समावेशन को देखते हुए समझ में आता है . लेकिन इनमें से पहला कथन सत्य नहीं है यदि परिबद्ध नहीं है; तो यह अभी भी सच है किसी के लिए , लेकिन ऐसा नहीं . इसे देखने के लिए, आमतौर पर फ़ंक्शन पर विचार किया जाता है , जो इसमें है लेकिन अंदर नहीं किसी भी परिमित के लिए .

एल1,loc बिल्कुल निरंतर माप का घनत्व का स्थान है

Theorem 3. एक समारोह f पूर्ण निरंतरता का घनत्व फ़ंक्शन (माप सिद्धांत) है # उपायों की पूर्ण निरंतरता यदि और केवल यदि .

इस परिणाम का प्रमाण रेखाचित्र द्वारा दिया गया है (Schwartz 1998, p. 18). अपने कथन को दोबारा दोहराते हुए, यह प्रमेय दावा करता है कि प्रत्येक स्थानीय रूप से पूर्णांकीय फ़ंक्शन एक बिल्कुल निरंतर माप को परिभाषित करता है और इसके विपरीत, प्रत्येक बिल्कुल निरंतर उपाय एक स्थानीय रूप से पूर्णांकीय फ़ंक्शन को परिभाषित करता है: यह, अमूर्त माप सिद्धांत ढांचे में, महत्वपूर्ण रेडॉन-निकोडिम प्रमेय का रूप भी है स्टैनिस्लाव साक्स ने अपने ग्रंथ में दिया है।[16]


उदाहरण

  • निरंतर कार्य 1 वास्तविक रेखा पर परिभाषित स्थानीय रूप से एकीकृत है लेकिन विश्व स्तर पर एकीकृत नहीं है क्योंकि वास्तविक रेखा में अनंत माप है। अधिक सामान्यतः, स्थिरांक (गणित), निरंतर कार्य[17] और एकीकृत कार्य स्थानीय रूप से एकीकृत होते हैं।[18]
  • कार्यक्रम x ∈ (0, 1) के लिए स्थानीय रूप से है लेकिन वैश्विक रूप से (0, 1) पर एकीकृत नहीं है। यह स्थानीय रूप से एकीकृत है क्योंकि किसी भी कॉम्पैक्ट सेट K ⊆ (0, 1) की 0 से सकारात्मक दूरी है और f इसलिए K पर घिरा है। यह उदाहरण प्रारंभिक दावे को रेखांकित करता है कि स्थानीय रूप से एकीकृत कार्यों को सीमा के पास विकास की स्थिति की संतुष्टि की आवश्यकता नहीं है परिबद्ध डोमेन.
  • कार्यक्रम
स्थानीय रूप से एकीकृत नहीं है x = 0: यह वास्तव में इस बिंदु के निकट स्थानीय रूप से एकीकृत है क्योंकि इसे शामिल किए बिना प्रत्येक कॉम्पैक्ट सेट पर इसका अभिन्न अंग परिमित है। औपचारिक रूप से बोलते हुए, 1/xL1,loc( \ 0):[19] हालाँकि, इस फ़ंक्शन को संपूर्ण वितरण तक बढ़ाया जा सकता है कॉची प्रमुख मूल्य के रूप में।[20]
  • पिछला उदाहरण एक प्रश्न उठाता है: क्या प्रत्येक फ़ंक्शन जो स्थानीय रूप से एकीकृत है Ω संपूर्ण के लिए एक विस्तार स्वीकार करें वितरण के रूप में? उत्तर नकारात्मक है, और एक प्रतिउदाहरण निम्नलिखित फ़ंक्शन द्वारा प्रदान किया गया है:
किसी भी वितरण को परिभाषित नहीं करता है .[21] * निम्नलिखित उदाहरण, पिछले उदाहरण के समान, एक फ़ंक्शन से संबंधित है L1,loc(\ 0) जो अनियमित विलक्षणता वाले विभेदक ऑपरेटरों के लिए वितरण के सिद्धांत के अनुप्रयोग में एक प्राथमिक प्रति-उदाहरण के रूप में कार्य करता है:
कहाँ k1 और k2 जटिल संख्या हैं, निम्नलिखित प्राथमिक फ़्यूचियन अंतर समीकरण का एक सामान्य समाधान है | प्रथम क्रम के गैर-फ़ुचियन अंतर समीकरण
फिर यह समग्र रूप से किसी भी वितरण को परिभाषित नहीं करता है , अगर k1 या k2 शून्य नहीं हैं: ऐसे समीकरण का एकमात्र वितरणात्मक वैश्विक समाधान शून्य वितरण है, और इससे पता चलता है कि, अंतर समीकरणों के सिद्धांत की इस शाखा में, वितरण के सिद्धांत के तरीकों से समान सफलता की उम्मीद नहीं की जा सकती है समान सिद्धांत की अन्य शाखाओं में, विशेष रूप से स्थिर गुणांक वाले रैखिक अंतर समीकरणों के सिद्धांत में।[22]


अनुप्रयोग

स्थानीय रूप से एकीकृत फ़ंक्शन वितरण (गणित) में एक प्रमुख भूमिका निभाते हैं और वे फ़ंक्शन (गणित) और फ़ंक्शन स्पेस के विभिन्न वर्गों की परिभाषा में होते हैं, जैसे कि बाध्य भिन्नता। इसके अलावा, वे रेडॉन-निकोडिम प्रमेय में प्रत्येक माप के बिल्कुल निरंतर भाग को चिह्नित करके प्रकट होते हैं।

यह भी देखें

  • कॉम्पैक्ट सेट
  • वितरण (गणित)
  • लेब्सग्यू का घनत्व प्रमेय
  • लेब्सेग विभेदन प्रमेय
  • लेब्सग इंटीग्रल
  • एलपी स्पेस

टिप्पणियाँ

  1. According to Gel'fand & Shilov (1964, p. 3).
  2. 2.0 2.1 See for example (Schwartz 1998, p. 18) and (Vladimirov 2002, p. 3).
  3. Another slight variant of this definition, chosen by Vladimirov (2002, p. 1), is to require only that K ⋐ Ω (or, using the notation of Gilbarg & Trudinger (2001, p. 9), K ⊂⊂ Ω), meaning that K is strictly included in Ω i.e. it is a set having compact closure strictly included in the given ambient set.
  4. The notion of compactness must obviously be defined on the given abstract measure space.
  5. This is the approach developed for example by Cafiero (1959, pp. 285–342) and by Saks (1937, chapter I), without dealing explicitly with the locally integrable case.
  6. See for example (Strichartz 2003, pp. 12–13).
  7. This approach was praised by Schwartz (1998, pp. 16–17) who remarked also its usefulness, however using Definition 1 to define locally integrable functions.
  8. Be noted that Maz'ya and Shaposhnikova define explicitly only the "localized" version of the Sobolev space Wk,p(Ω), nevertheless explicitly asserting that the same method is used to define localized versions of all other Banach spaces used in the cited book: in particular, Lp,loc(Ω) is introduced on page 44.
  9. Not to be confused with the Hausdorff distance.
  10. 10.0 10.1 See for example (Vladimirov 2002, p. 3) and (Maz'ya & Poborchi 1997, p. 4).
  11. As remarked in the previous section, this is the approach adopted by Maz'ya & Shaposhnikova (2009), without developing the elementary details.
  12. Precisely, they form a vector subspace of L1,loc(Ω): see Corollary 1 to Theorem 2.
  13. See for example (Vladimirov 2002, p. 3), where a calligraphic is used.
  14. See (Gilbarg & Trudinger 2001, p. 147), (Maz'ya & Poborchi 1997, p. 5) for a statement of this results, and also the brief notes in (Maz'ja 1985, p. 6) and (Maz'ya 2011, p. 2).
  15. Gilbarg & Trudinger (2001, p. 147) and Maz'ya & Poborchi (1997, p. 5) only sketch very briefly the method of proof, while in (Maz'ja 1985, p. 6) and (Maz'ya 2011, p. 2) it is assumed as a known result, from which the subsequent development starts.
  16. According to Saks (1937, p. 36), "If E is a set of finite measure, or, more generally the sum of a sequence of sets of finite measure (μ), then, in order that an additive function of a set (𝔛) on E be absolutely continuous on E, it is necessary and sufficient that this function of a set be the indefinite integral of some integrable function of a point of E". Assuming (μ) to be the Lebesgue measure, the two statements can be seen to be equivalent.
  17. See for example (Hörmander 1990, p. 37).
  18. See (Strichartz 2003, p. 12).
  19. See (Schwartz 1998, p. 19).
  20. See (Vladimirov 2002, pp. 19–21).
  21. See (Vladimirov 2002, p. 21).
  22. For a brief discussion of this example, see (Schwartz 1998, pp. 131–132).


संदर्भ


बाहरी संबंध

This article incorporates material from Locally integrable function on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.