पहचान तत्व

From alpha
Jump to navigation Jump to search

गणित में, एक सेट (गणित) पर चलने वाले बाइनरी ऑपरेशन का एक पहचान तत्व, या तटस्थ तत्व, सेट का एक तत्व है जो ऑपरेशन लागू होने पर सेट के प्रत्येक तत्व को अपरिवर्तित छोड़ देता है।[1][2] इस अवधारणा का उपयोग बीजगणितीय संरचनाओं जैसे कि समूह (गणित) और वलय (गणित) में किया जाता है। पहचान तत्व शब्द को अक्सर पहचान के लिए छोटा किया जाता है (जैसा कि योगात्मक पहचान और गुणक पहचान के मामले में)[3] जब भ्रम की कोई संभावना नहीं होती है, लेकिन पहचान अंतर्निहित रूप से उस बाइनरी ऑपरेशन पर निर्भर करती है जिससे यह जुड़ा हुआ है।

परिभाषाएँ

होने देना (S, ∗) एक समुच्चय होS एक बाइनरी ऑपरेशन से लैस है ∗। फिर एक तत्वe काS कहा जाता है left identity अगर es = s सभी के लिएs मेंS, और ए right identity अगर se = s सभी के लिएs मेंS.[4] अगर e एक बायीं पहचान और एक सही पहचान दोनों है, तो इसे a कहा जाता हैtwo-sided identity, या बस एकidentity.[5][6][7][8][9] जोड़ के संबंध में एक सर्वसमिका को योगात्मक तत्समक कहा जाता है|additive identity (अक्सर 0 के रूप में दर्शाया जाता है) और गुणन के संबंध में एक पहचान को a कहा जाता हैmultiplicative identity (अक्सर 1 के रूप में दर्शाया जाता है)।[3]इन्हें सामान्य जोड़ और गुणा करने की आवश्यकता नहीं है - क्योंकि अंतर्निहित ऑपरेशन मनमाना हो सकता है। उदाहरण के लिए एक समूह (गणित) के मामले में, पहचान तत्व को कभी-कभी केवल प्रतीक द्वारा निरूपित किया जाता है . योज्य और गुणक पहचान के बीच अंतर का उपयोग अक्सर उन सेटों के लिए किया जाता है जो दोनों द्विआधारी संचालन का समर्थन करते हैं, जैसे कि रिंग (गणित), अभिन्न डोमेन और फ़ील्ड (गणित)। गुणात्मक पहचान को अक्सर कहा जाता हैunity बाद के संदर्भ में (एकता के साथ एक अंगूठी)।[10][11][12] इसे रिंग थ्योरी में एक इकाई (रिंग सिद्धांत) के साथ भ्रमित नहीं होना चाहिए, जो कि गुणक व्युत्क्रम वाला कोई भी तत्व है। अपनी परिभाषा के अनुसार, एकता अपने आप में अनिवार्य रूप से एक इकाई है।[13][14]


उदाहरण

Set Operation Identity
Real numbers + (addition) 0
· (multiplication) 1
Complex numbers + (addition) 0
· (multiplication) 1
Positive integers Least common multiple 1
Non-negative integers Greatest common divisor 0 (under most definitions of GCD)
Vectors Vector addition Zero vector
m-by-n matrices Matrix addition Zero matrix
n-by-n square matrices Matrix multiplication In (identity matrix)
m-by-n matrices ○ (Hadamard product) Jm, n (matrix of ones)
All functions from a set, M, to itself ∘ (function composition) Identity function
All distributions on a groupG ∗ (convolution) δ (Dirac delta)
Extended real numbers Minimum/infimum +∞
Maximum/supremum −∞
Subsets of a set M ∩ (intersection) M
∪ (union) ∅ (empty set)
Strings, lists Concatenation Empty string, empty list
A Boolean algebra ∧ (logical and) ⊤ (truth)
↔ (logical biconditional) ⊤ (truth)
∨ (logical or) ⊥ (falsity)
⊕ (exclusive or) ⊥ (falsity)
Knots Knot sum Unknot
Compact surfaces # (connected sum) S2
Groups Direct product Trivial group
Two elements, {e, f}  ∗ defined by
ee = fe = e and
ff = ef = f
Both e and f are left identities,
but there is no right identity
and no two-sided identity
Homogeneous relations on a set X Relative product Identity relation
Relational algebra Natural join (⋈) The unique relation degree zero and cardinality one


गुण

उदाहरण में S = {e, f} दी गई समानता के साथ, S एक अर्धसमूह है। की संभावना को प्रदर्शित करता है (S, ∗) कई बाईं पहचान रखने के लिए। वास्तव में, प्रत्येक तत्व एक वामपंथी पहचान हो सकता है। इसी तरह, कई सही पहचान हो सकती हैं। लेकिन अगर सही पहचान और बाईं पहचान दोनों हैं, तो उन्हें समान होना चाहिए, जिसके परिणामस्वरूप एक दो-तरफा पहचान होती है।

इसे देखने के लिए ध्यान दें कि अगर l एक वामपंथी पहचान है और r तब एक सही पहचान है l = lr = r. विशेष रूप से, एक से अधिक दो तरफा पहचान कभी नहीं हो सकती है: यदि दो थे, तो कहें e और f, तब ef दोनों के बराबर होना होगा e और f.

के लिए भी काफी संभव है (S, ∗) कोई पहचान तत्व नहीं है,[15] जैसे गुणन संक्रिया के अंतर्गत सम पूर्णांकों की स्थिति।[3]एक अन्य सामान्य उदाहरण यूक्लिडियन वेक्टर का क्रॉस उत्पाद है, जहां एक पहचान तत्व की अनुपस्थिति इस तथ्य से संबंधित है कि किसी भी गैर-शून्य क्रॉस उत्पाद की दिशा (ज्यामिति) हमेशा किसी भी तत्व के गुणन के लिए ओर्थोगोनल होती है। यही है, मूल के समान दिशा में गैर-शून्य वेक्टर प्राप्त करना संभव नहीं है। फिर भी पहचान तत्व के बिना संरचना का एक और उदाहरण सकारात्मक संख्या प्राकृतिक संख्याओं के योगात्मक अर्धसमूह को शामिल करता है।

यह भी देखें

नोट्स और संदर्भ

  1. Weisstein, Eric W. "पहचान तत्व". mathworld.wolfram.com. Retrieved 2019-12-01.
  2. "पहचान तत्व की परिभाषा". www.merriam-webster.com. Retrieved 2019-12-01.
  3. 3.0 3.1 3.2 "पहचान तत्व". www.encyclopedia.com. Retrieved 2019-12-01.
  4. Fraleigh (1976, p. 21)
  5. Beauregard & Fraleigh (1973, p. 96)
  6. Fraleigh (1976, p. 18)
  7. Herstein (1964, p. 26)
  8. McCoy (1973, p. 17)
  9. "Identity Element | Brilliant Math & Science Wiki". brilliant.org. Retrieved 2019-12-01.
  10. Beauregard & Fraleigh (1973, p. 135)
  11. Fraleigh (1976, p. 198)
  12. McCoy (1973, p. 22)
  13. Fraleigh (1976, pp. 198, 266)
  14. Herstein (1964, p. 106)
  15. McCoy (1973, p. 22)

ग्रन्थसूची


अग्रिम पठन

  • M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories with Applications to Wreath Products and Graphs, De Gruyter Expositions in Mathematics vol. 29, Walter de Gruyter, 2000, ISBN 3-11-015248-7, p. 14–15