सजातीय अंतर समीकरण

From alpha
Revision as of 23:07, 23 July 2023 by Indicwiki (talk | contribs) (Created page with "{{Short description|Type of ordinary differential equation}} एक विभेदक समीकरण दो मामलों में से किसी एक मे...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Jump to navigation Jump to search

एक विभेदक समीकरण दो मामलों में से किसी एक में सजातीय हो सकता है।

प्रथम कोटि अवकल समीकरण को सजातीय कहा जाता है यदि इसे लिखा जा सके

कहाँ f और g समान डिग्री के सजातीय कार्य हैं x और y.[1] इस मामले में, चर का परिवर्तन y = ux प्रपत्र के एक समीकरण की ओर ले जाता है

जिसे दोनों सदस्यों के एकीकरण द्वारा हल करना आसान है।

अन्यथा, एक अंतर समीकरण सजातीय होता है यदि यह अज्ञात फ़ंक्शन और उसके डेरिवेटिव का एक सजातीय कार्य है। रैखिक अवकल समीकरणों के मामले में, इसका मतलब है कि कोई स्थिर पद नहीं हैं। किसी भी क्रम के किसी भी रैखिक साधारण अंतर समीकरण का समाधान स्थिर पद को हटाकर प्राप्त सजातीय समीकरण के समाधान से एकीकरण द्वारा निकाला जा सकता है।

इतिहास

सजातीय शब्द को सबसे पहले जोहान बर्नौली ने अपने 1726 के लेख डी इंटेग्रेओनिबस एक्वेशनम डिफरेंशियलियम (अंतर समीकरणों के एकीकरण पर) के खंड 9 में अंतर समीकरणों पर लागू किया था।[2]


सजातीय प्रथम कोटि अवकल समीकरण

प्रथम-क्रम साधारण अवकल समीकरण के रूप में:

यदि दोनों कार्य करते हैं तो यह एक सजातीय प्रकार है M(x, y) और N(x, y) समान डिग्री के सजातीय कार्य हैं n.[3] अर्थात्, प्रत्येक वेरिएबल को एक पैरामीटर से गुणा करना λ, हम देखतें है

इस प्रकार,


समाधान विधि

भागफल में , हम दे सकते हैं t = 1/xइस भागफल को किसी फ़ंक्शन में सरल बनाने के लिए f एकल चर का y/x:

वह है

चरों के परिवर्तन का परिचय दें y = ux; उत्पाद नियम का उपयोग करके अंतर करें:

यह मूल अंतर समीकरण को चर पृथक्करण रूप में बदल देता है

या

जिसे अब सीधे एकीकृत किया जा सकता है: ln x दाहिनी ओर के प्रतिअवकलन के बराबर है (साधारण अंतर समीकरण देखें)।

विशेष मामला

प्रपत्र का प्रथम कोटि अवकल समीकरण (a, b, c, e, f, g सभी स्थिरांक हैं)

कहाँ afbe दोनों चर के रैखिक परिवर्तन द्वारा एक सजातीय प्रकार में परिवर्तित किया जा सकता है (α और β स्थिरांक हैं):


सजातीय रैखिक अवकल समीकरण

एक रैखिक अंतर समीकरण सजातीय होता है यदि यह अज्ञात फ़ंक्शन और उसके डेरिवेटिव में एक सजातीय रैखिक समीकरण है। यह इस प्रकार है, यदि φ(x) एक समाधान है, इसलिए है (x), किसी भी (गैर-शून्य) स्थिरांक के लिए c. इस स्थिति को बनाए रखने के लिए, रैखिक अंतर समीकरण के प्रत्येक गैर-शून्य पद को अज्ञात फ़ंक्शन या उसके किसी व्युत्पन्न पर निर्भर होना चाहिए। एक रैखिक अवकल समीकरण जो इस स्थिति को विफल करता है उसे अमानवीय कहा जाता है।

एक रेखीय अवकल समीकरण को एक रेखीय ऑपरेटर के रूप में दर्शाया जा सकता है y(x) कहाँ x आमतौर पर स्वतंत्र चर है और y आश्रित चर है. अत: रैखिक समांगी अवकल समीकरण का सामान्य रूप है

कहाँ L एक विभेदक ऑपरेटर है, डेरिवेटिव का योग (0 वें डेरिवेटिव को मूल, गैर-विभेदित फ़ंक्शन के रूप में परिभाषित करना), प्रत्येक को एक फ़ंक्शन द्वारा गुणा किया जाता है fi का x:

कहाँ fi स्थिरांक हो सकते हैं, लेकिन सभी नहीं fi शून्य हो सकता है.

उदाहरण के लिए, निम्नलिखित रैखिक अंतर समीकरण सजातीय है:

जबकि निम्नलिखित दो अमानवीय हैं:

किसी समीकरण के अमानवीय होने के लिए एक स्थिर पद का अस्तित्व एक पर्याप्त शर्त है, जैसा कि उपरोक्त उदाहरण में है।

यह भी देखें

  • चरों का पृथक्करण

टिप्पणियाँ

  1. Dennis G. Zill (15 March 2012). मॉडलिंग अनुप्रयोगों के साथ विभेदक समीकरणों में पहला कोर्स. Cengage Learning. ISBN 978-1-285-40110-2.
  2. "विभेदक समीकरणों के एकीकरण पर". Commentarii Academiae Scientiarum Imperialis Petropolitanae. 1: 167–184. June 1726.
  3. Ince 1956, p. 18


संदर्भ


बाहरी संबंध