अवकल फलन

From alpha
Jump to navigation Jump to search

गणना में, अवकलन फलन (गणित) स्वतंत्र वेरिएबल्स में परिवर्तन के संबंध में फलन में परिवर्तन के मुख्य भाग का प्रतिनिधित्व करता है। अवकलन द्वारा परिभाषित किया गया है

जहाँ के संबंध में f का व्युत्पन्न है, और एक अतिरिक्त वास्तविक वेरिएबल्स (गणित) (जिससे और का एक फलन हो) है। अंकन ऐसा है कि समीकरण

धारण करता है, जहां लीबनिज संकेतन में व्युत्पन्न का प्रतिनिधित्व किया जाता है, और यह अवकलन के भागफल के रूप में व्युत्पन्न के संबंध में संगत है। लिखता भी है

वेरिएबल्स का सटीक अर्थ और आवेदन के संदर्भ और गणितीय कठोरता के आवश्यक स्तर पर निर्भर करता है। इन वेरिएबल्स का डोमेन विशेष ज्यामितीय महत्व पर ले सकता है यदि अवकलन को विशेष अवकलन रूप, या विश्लेषणात्मक महत्व के रूप में माना जाता है, यदि अवकलन को किसी फलन की वृद्धि के लिए रैखिक सन्निकटन के रूप में माना जाता है। परंपरागत रूप से, वेरिएबल्स और बहुत छोटा (अनंत) माना जाता है, और इस व्याख्या को गैर-मानक विश्लेषण में कठोर बनाया जाता है।

इतिहास और उपयोग

अवकलन को पहली बार आइजैक न्यूटन द्वारा सहज या अनुमानी परिभाषा के माध्यम से प्रस्तुत किया गया था और गॉटफ्रीड लाइबनिट्स द्वारा आगे बढ़ाया गया था,जिन्होंने फ़ंक्शन के तर्क में एक अनंत रूप से छोटे परिवर्तन के अनुरूप फ़ंक्शन के मान में एक अनंत रूप से छोटे परिवर्तन (या अनंत) के रूप में अंतर के बारे में सोचा था। उस कारण से, के संबंध में के परिवर्तन की तात्कालिक दर, जो फ़ंक्शन के व्युत्पन्न का मान है, को अंश द्वारा दर्शाया गया है

डेरिवेटिव के लिए लाइबनिज संकेतन कहा जाता है। भागफल अनंत रूप से छोटा नहीं है; किन्तु यह वास्तविक संख्या है।

उदाहरण के लिए, बिशप बर्कले द्वारा प्रसिद्ध पैम्फलेट विश्लेषक द्वारा इस रूप में इनफिनिटिमल्स के उपयोग की व्यापक रूप से आलोचना की गई थी। ऑगस्टिन-लुई कॉची (1823) ने लीबनिज के इनफिनिटिमल्स के परमाणुवाद की अपील के बिना अंतर को परिभाषित किया।[1][2] इसके अतिरिक्त, कॉची, जीन ले रोंड डी'अलेम्बर्ट का अनुसरण करते हुए, लीबनिज़ और उनके उत्तराधिकारियों के तार्किक क्रम को उल्टा कर दिया: व्युत्पन्न ही मौलिक वस्तु बन गया, जिसे अवकलन भागफलों की सीमा (गणित) के रूप में परिभाषित किया गया था, और अवकलन तब थे इसके संदर्भ में परिभाषित किया गया है। अर्थात्, अवकलन को परिभाषित करने के लिए कोई भी स्वतंत्र था अभिव्यक्ति द्वारा

जिसमें और परिमित वास्तविक मान लेने वाले बस नए वेरिएबल्स हैं,[3] नियत अतिसूक्ष्म नहीं जैसा कि लाइबनिज के लिए था।[4] के अनुसार Boyer (1959, p. 12), कॉची का दृष्टिकोण लीबनिज के अतिसूक्ष्म दृष्टिकोण पर महत्वपूर्ण तार्किक सुधार था, क्योंकि, अत्यल्प मात्राओं की आध्यात्मिक धारणा को प्रायुक्त करने के अतिरिक्त, मात्राएँ और अब किसी भी अन्य वास्तविक मात्राएँ सार्थक विधि के समान ही हेरफेर किया जा सकता है। अवकलनों के प्रति कॉची का समग्र अवधारणात्मक दृष्टिकोण आधुनिक विश्लेषणात्मक उपचारों में मानक बना हुआ है,[5] चूंकि कठोरता पर अंतिम शब्द, सीमा की पूरी तरह से आधुनिक धारणा, अंततः कार्ल वीयरस्ट्रास के कारण थी।[6]

भौतिक उपचारों में, जैसे कि ऊष्मप्रवैगिकी के सिद्धांत पर प्रायुक्त होने वाले, अनंत दृश्य अभी भी प्रबल है। कुरेंट & जॉन (1999, p. 184) इनफिनिटिमल डिफरेंशियल के भौतिक उपयोग को उनकी गणितीय असंभवता के साथ इस प्रकार मिलाते हैं। अवकलन परिमित गैर-शून्य मानों का प्रतिनिधित्व करते हैं जो उस विशेष उद्देश्य के लिए आवश्यक शुद्धता की डिग्री से छोटे होते हैं जिसके लिए उनका लक्ष्य होता है। इस प्रकार भौतिक अतिसूक्ष्मों को त्रुटिहीन अर्थ रखने के लिए संबंधित गणितीय अतिसूक्ष्म से अपील करने की आवश्यकता नहीं है।

गणितीय विश्लेषण और विभेदक ज्यामिति में बीसवीं शताब्दी के विकास के बाद, यह स्पष्ट हो गया कि फलन के अवकलन की धारणा को विभिन्न तरीकों से विस्तारित किया जा सकता है। वास्तविक विश्लेषण में, किसी फलन की वृद्धि के प्रमुख भाग के रूप में सीधे अवकलन से निपटना अधिक वांछनीय है। यह सीधे इस धारणा की ओर जाता है कि बिंदु पर फलन का अवकलन वेतन वृद्धि का रैखिक फलन है। यह दृष्टिकोण विभिन्न प्रकार के अधिक परिष्कृत स्थानों के लिए अवकलन (रेखीय मानचित्र के रूप में) को विकसित करने की अनुमति देता है, अंततः इस तरह की धारणाओं को जन्म देता है जैसे कि फ्रेचेट या गेटॉक्स व्युत्पन्न। इसी तरह, विभेदक ज्यामिति में, बिंदु पर फलन का अवकलन स्पर्शरेखा सदिश (अनंत रूप से छोटा विस्थापन) का रैखिक फलन है, जो इसे प्रकार के रूप के रूप में प्रदर्शित करता है: फलन का बाहरी व्युत्पन्न। गैर-मानक कैलकुलस में, अवकलनों को इनफिनिटिमल्स के रूप में माना जाता है, जिसे स्वयं कठोर (देखें अवकलन (इनफिनिटिमल)) आधार पर रखा जा सकता है।

परिभाषा

फलन का अवकलन बिंदु पर .

अवकलन कैलकुलस के आधुनिक उपचारों में अवकलन को इस प्रकार परिभाषित किया गया है।[7] एकल वास्तविक वेरिएबल्स के फलन का अवकलन दो स्वतंत्र वास्तविक वेरिएबल्स और का फलन है

या दोनों तर्कों को दबा दिया जा सकता है, अर्थात् कोई या केवल देख सकता है। यदि , अवकलन को के रूप में भी लिखा जा सकता है। तब से , यह लिखने के लिए पारंपरिक है जिससे निम्नलिखित समानता हो:

अवकलन की यह धारणा सामान्यतः तब प्रायुक्त होती है जब किसी फलन के लिए रैखिक सन्निकटन मांगा जाता है, जिसमें वृद्धि का मान काफी छोटा है। अधिक सटीक, यदि पर अवकलनीय फलन है , फिर में अवकलन -मान

संतुष्ट

जहां त्रुटि सन्निकटन में संतुष्ट जैसा . दूसरे शब्दों में, किसी की अनुमानित पहचान होती है

जिसमें को पर्याप्त रूप से छोटा करने के लिए बाध्य करके त्रुटि को के सापेक्ष वांछित के रूप में छोटा किया जा सकता है; अर्थात्,

जैसा . इस कारण से, किसी फलन के अवकलन को मुख्य भाग के रूप में जाना जाता है | प्रमुख भाग (रैखिक) भाग फलन के वृद्धि में होता है: अवकलन वृद्धि का रैखिक फलन है, और यद्यपि त्रुटि अरेखीय हो सकता है, यह तेजी से शून्य हो जाता है क्योंकि शून्य हो जाता है।

कई वेरिएबल्स में अवकलन

ऑपरेटर / फलन
अवकलन 1: 2:

3:

आंशिक व्युत्पन्न
कुल व्युत्पन्न

अगले Goursat (1904, I, §15), से अधिक स्वतंत्र वेरिएबल्स के फलनों के लिए,

किसी एक वेरिएबल्स x1 के संबंध में y का आंशिक अंतर y में परिवर्तन का मुख्य भाग है जो उस एक वेरिएबल्स में परिवर्तन dx1 के परिणामस्वरूप होता है। आंशिक अंतर इसलिए है

x1 के संबंध में y का आंशिक अवकलज सम्मिलित है. सभी स्वतंत्र वेरिएबल्स के संबंध में आंशिक अवकलनों का योग कुल अवकलन है

जो y में परिवर्तन का मुख्य भाग है जो स्वतंत्र वेरिएबल्स xi में परिवर्तनों के परिणामस्वरूप होता है.

अधिक सटीक रूप से, बहुभिन्नरूपी कलन के संदर्भ में, निम्नलिखित कुरंट (1937b), यदि f अवकलनीय फलन है, तो फ्रेचेट व्युत्पन्न द्वारा, वृद्धि

जहां त्रुटि शब्द εi वृद्धि Δxi के रूप में शून्य हो जाती है संयुक्त रूप से शून्य हो जाते हैं। कुल अवकलन को तब कड़ाई से परिभाषित किया जाता है

चूंकि, इस परिभाषा के साथ,

किसी के पास

जैसा कि वेरिएबल्स के मामले में, अनुमानित तत्समक धारण करता है

जिसमें पर्याप्त रूप से छोटे वेतन वृद्धि पर ध्यान केंद्रित करके के सापेक्ष कुल त्रुटि को वांछित के रूप में छोटा किया जा सकता है।

त्रुटि अनुमान के लिए कुल अवकलन का अनुप्रयोग

मापन में, प्रायोगिक अनिश्चितता विश्लेषण में कुल अंतर का उपयोग पैरामीटर , के की त्रुटियों के आधार पर फ़लन की त्रुटि का अनुमान लगाने में किया जाता है। यह मानते हुए कि परिवर्तन लगभग रैखिक होने के लिए पर्याप्त छोटा है:

और यह कि सभी वेरिएबल्स स्वतंत्र हैं, फिर सभी वेरिएबल्स के लिए,

ऐसा इसलिए है क्योंकि विशेष पैरामीटर के संबंध में व्युत्पन्न फ़ंक्शन की संवेदनशीलता को में परिवर्तन के लिए देता है, विशेष रूप से त्रुटि है। जैसा कि उन्हें स्वतंत्र माना जाता है, विश्लेषण सबसे खराब स्थिति का वर्णन करता है। घटक त्रुटियों के निरपेक्ष मूल्यों का उपयोग किया जाता है, क्योंकि सरल संगणना के बाद, व्युत्पन्न में ऋणात्मक चिह्न हो सकता है। इस सिद्धांत से योग, गुणन आदि के त्रुटि नियम व्युत्पन्न होते हैं, जैसे:

मान लिजिये ;
; डेरिवेटिव का मानांकन
Δf = bΔa + aΔb; f से विभाजित करना, जो a × b है
Δf/f = Δa/a + Δb/b

कहने का तात्पर्य यह है कि गुणन में, कुल सापेक्ष त्रुटि प्राचलों की सापेक्ष त्रुटियों का योग होती है।

यह समझने के लिए कि यह किस प्रकार फलन पर निर्भर करता है, उस मामले पर विचार करें जहां फलन है। फिर, यह गणना की जा सकती है कि त्रुटि अनुमान है

Δf/f = Δa/a + Δb/(b ln b)

एक साधारण उत्पाद के मामले में एक अतिरिक्त 'ln b' कारक नहीं मिला थ। यह अतिरिक्त कारक त्रुटि को छोटा करता है, क्योंकि ln b एक नंगे b जितना बड़ा नहीं है।

उच्च-क्रम अवकलन

किसी एकल वेरिएबल्स x के फलन y = f(x) के उच्च-क्रम के अवकलनों को इसके माध्यम से परिभाषित किया जा सकता है:[8]

और, सामान्य तौर पर,

अनौपचारिक रूप से, यह उच्च क्रम के डेरिवेटिव के लिए लिबनिज़ के अंकन को प्रेरित करता है

जब स्वतंत्र वेरिएबल्स x को स्वयं अन्य वेरिएबल्स पर निर्भर रहने की अनुमति दी जाती है, तो अभिव्यक्ति अधिक जटिल हो जाती है, क्योंकि इसमें x में ही उच्च क्रम के अवकलन भी सम्मिलित होने चाहिए। इस प्रकार, उदाहरण के लिए,

इत्यादि।

इसी तरह के विचार कई वेरिएबल्स के फलनों के उच्च क्रम के अवकलन को परिभाषित करने के लिए प्रायुक्त होते हैं। उदाहरण के लिए, यदि f दो वेरिएबल्स x और y का फलन है, तो

जहाँ द्विपद गुणांक है। अधिक वेरिएबल्स में, समान अभिव्यक्ति धारण करती है, लेकिन द्विपद विस्तार के अतिरिक्त उपयुक्त बहुपद गुणांक विस्तार के साथ।[9] कई वेरिएबल्स में उच्च क्रम के अवकलन भी अधिक जटिल हो जाते हैं जब स्वतंत्र वेरिएबल्स को स्वयं अन्य वेरिएबल्स पर निर्भर रहने की अनुमति दी जाती है। उदाहरण के लिए, x और y के फलन f के लिए, जिन्हें सहायक वेरिएबल्स पर निर्भर रहने की अनुमति है, के पास है

इस सांकेतिक अक्षमता के कारण, उच्च क्रम के अवकलनों के उपयोग की व्यापक रूप से आलोचना की गई थी हैडमार्ड 1935, जिन्होंने निष्कर्ष निकाला:

अंत में, समानता का अर्थ या प्रतिनिधित्व क्या है?
ए मोन एविस, रिएन डू टाउट।

वह है: अंत में, समानता [...] का क्या अर्थ है, या प्रतिनिधित्व किया गया है? मेरी राय में, कुछ भी नहीं। इस संशयवाद के अतिरिक्त, उच्च क्रम के अवकलन विश्लेषण में महत्वपूर्ण उपकरण के रूप में उभरे थे।[10]

इन संदर्भों में, वृद्धि Δx पर प्रायुक्त फलन f के nवें क्रम के अवकलन को इसके द्वारा परिभाषित किया जाता है

या समकक्ष अभिव्यक्ति, जैसे

जहाँ वृद्धि tΔx के साथ nवां आगे का अवकलन है।

यह परिभाषा तब भी समझ में आती है जब f कई वेरिएबल्स का फलन है (सादगी के लिए यहाँ वेक्टर तर्क के रूप में लिया गया है)। फिर इस तरह से परिभाषित nवां अवकलन सदिश वृद्धि Δx में डिग्री n का सजातीय फलन है। इसके अतिरिक्त, बिंदु x पर f की टेलर श्रृंखला द्वारा दी गई है

उच्च क्रम गैटॉक्स व्युत्पन्न इन विचारों को अनंत आयामी स्थानों के लिए सामान्यीकृत करता है।

गुण

अवकलन के कई गुण व्युत्पन्न, आंशिक व्युत्पन्न और कुल व्युत्पन्न के संबंधित गुणों से सीधे विधि से अनुसरण करते हैं। इसमे सम्मिलित है:[11]

  • रैखिकता: स्थिरांक a और b और अवकलनीय फलन f और g के लिए,
  • उत्पाद नियम: दो अलग-अलग फलनों f और g के लिए,

इन दो गुणों के साथ ऑपरेशन डी सार बीजगणित में व्युत्पन्न (अमूर्त बीजगणित) के रूप में जाना जाता है। वे शक्ति नियम प्रायुक्त करते हैं

इसके अतिरिक्त, व्यापकता के बढ़ते स्तर में श्रृंखला नियम के विभिन्न रूप धारण करते हैं:[12]

  • यदि y = f(u) वेरिएबल u का अवकलनीय फलन है और u = g(x) x का अवकलनीय फलन है, तो
  • यदि y = f(x1, ..., xn) और सभी वेरिएबल्स x1, ..., xn दूसरे वेरिएबल t पर निर्भर करते हैं, फिर चेन रूल द्वारा कई वेरिएबल्स के लिए, के पास है
अनुमानिक रूप से, कई वेरिएबल्स के लिए श्रृंखला नियम को इस समीकरण के दोनों पक्षों के माध्यम से अनंत रूप से छोटी मात्रा dt से विभाजित करके समझा जा सकता है।
  • अधिक सामान्य अनुरूप भाव धारण करते हैं, जिसमें मध्यवर्ती वेरिएबल्स xi होते हैं से अधिक वेरिएबल्स पर निर्भर करते हैं।

सामान्य सूत्रीकरण

फलन f : RnRm दो यूक्लिडियन अवकलनिक्ष स्थान के बीच के लिए अवकलन की सुसंगत धारणा विकसित की जा सकती है। माना x,Δx ∈ Rn यूक्लिडियन सदिशों का युग्म हो। फलन f में वृद्धि है

यदि कोई m × n मैट्रिक्स (गणित) A उपस्थित है, जैसे कि

जिसमें वेक्टर ε → 0 के रूप में Δx → 0, फिर f परिभाषा के अनुसार बिंदु x पर अवकलनीय है। मैट्रिक्स A को कभी-कभी जैकबियन मैट्रिक्स के रूप में जाना जाता है, और रैखिक परिवर्तन जो वेतन वृद्धि Δx ∈ Rn से जुड़ा होता है सदिश AΔ'x' ∈ 'R'm, इस सामान्य सेटिंग में, बिंदु x पर f के अवकल df(x) के रूप में जाना जाता है। यह बिल्कुल फ्रेचेट डेरिवेटिव है, और किसी भी बनच रिक्त स्थान के बीच फलन के लिए काम करने के लिए ही निर्माण किया जा सकता है।

और उपयोगी दृष्टिकोण अवकलन को सीधे प्रकार के दिशात्मक व्युत्पन्न के रूप में परिभाषित करना है:

जो उच्च क्रम के अवकलन को परिभाषित करने के लिए पहले से ही लिया गया दृष्टिकोण है (और कॉची द्वारा निर्धारित परिभाषा के लगभग है)। यदि टी समय और 'एक्स' स्थिति का प्रतिनिधित्व करता है, तो 'एच' विस्थापन के अतिरिक्त वेग का प्रतिनिधित्व करता है जैसा कि हमने इसे पहले माना है। यह अवकलन की धारणा का और शोधन देता है: कि यह गतिज वेग का रैखिक फलन होना चाहिए। अवकलनिक्ष के किसी दिए गए बिंदु के माध्यम से सभी वेगों का सेट स्पर्शरेखा स्थान के रूप में जाना जाता है, और इसलिए df स्पर्शरेखा स्थान पर रैखिक फलन देता है: अवकलन रूप। इस व्याख्या के साथ, एफ के अवकलन को बाहरी व्युत्पन्न के रूप में जाना जाता है, और अवकलन ज्यामिति में व्यापक अनुप्रयोग होता है क्योंकि वेग और स्पर्शरेखा स्थान की धारणा किसी भी अलग-अलग कई गुना पर समझ में आती है। यदि, इसके अतिरिक्त, f का आउटपुट मान भी स्थिति (यूक्लिडियन अवकलनिक्ष में) का प्रतिनिधित्व करता है, तो आयामी विश्लेषण पुष्टि करता है कि df का आउटपुट मान वेग होना चाहिए। यदि कोई इस विधि से अवकलन का इलाज करता है, तो इसे पुशफॉर्वर्ड (अवकलन) के रूप में जाना जाता है क्योंकि यह स्रोत स्थान से वेग को लक्ष्य स्थान में वेग में धकेलता है।

अन्य दृष्टिकोण

यद्यपि अतिसूक्ष्म वेतन वृद्धि dx होने की धारणा आधुनिक गणितीय विश्लेषण में अच्छी तरह से परिभाषित नहीं है, अवकलन (अनंत) को परिभाषित करने के लिए कई तरह की तकनीकें उपस्थित हैं जिससे किसी फलन के अवकलन को इस तरह से नियंत्रित किया जा सके जो इसके साथ संघर्ष न करे। लीबनिज संकेतन। इसमे सम्मिलित है:

  • अवकलन को प्रकार के अवकलन फॉर्म के रूप में परिभाषित करना, विशेष रूप से किसी फलन का बाहरी डेरिवेटिव। फिर बिंदु पर स्पर्शरेखा स्थान में वैक्टर के साथ अनंत वेतन वृद्धि की पहचान की जाती है। यह दृष्टिकोण अवकलन ज्यामिति और संबंधित क्षेत्रों में लोकप्रिय है, क्योंकि यह अलग-अलग कई गुनाओं के बीच मैपिंग को आसानी से सामान्यीकृत करता है।
  • क्रमविनिमेय वलयों के निलपोटेंट तत्वों के रूप में अवकलन। यह दृष्टिकोण बीजगणितीय ज्यामिति में लोकप्रिय है।[13]
  • सेट थ्योरी के स्मूथ मॉडल में अवकलन्स। इस दृष्टिकोण को सिंथेटिक अवकलन ज्यामिति या चिकना अत्यल्प विश्लेषण के रूप में जाना जाता है और यह बीजगणितीय ज्यामितीय दृष्टिकोण से निकटता से संबंधित है, सिवाय इसके कि टोपोस सिद्धांत के विचारों का उपयोग उस तंत्र को छिपाने के लिए किया जाता है जिसके द्वारा निलपोटेंट इनफिनिटिमल प्रस्तुत किए जाते हैं।[14]
  • अति वास्तविक संख्या सिस्टम में इनफिनिटिमल्स के रूप में अवकलन, जो वास्तविक संख्याओं के विस्तार होते हैं जिनमें इन्वर्टिबल इनफिनिटिमल्स और अनंत रूप से बड़ी संख्याएँ होती हैं। यह अब्राहम रॉबिन्सन द्वारा प्रतिपादित अमानक विश्लेषण का दृष्टिकोण है।[15]


उदाहरण और अनुप्रयोग

गणना में प्रयोगात्मक त्रुटियों के प्रसार का अध्ययन करने के लिए संख्यात्मक विश्लेषण में विभेदकों का प्रभावी ढंग से उपयोग किया जा सकता है, और इस प्रकार किसी समस्या की समग्र संख्यात्मक स्थिरता (कुरंट 1937a). मान लीजिए कि वेरिएबल्स x प्रयोग के परिणाम का प्रतिनिधित्व करता है और y x पर प्रायुक्त संख्यात्मक गणना का परिणाम है। प्रश्न यह है कि किस सीमा तक x के मापन में त्रुटियाँ y की गणना के परिणाम को प्रभावित करती हैं। यदि x अपने वास्तविक मान के Δx के अन्दर जाना जाता है, तो टेलर का प्रमेय y की गणना में त्रुटि Δy पर निम्नलिखित अनुमान देता है:

जहाँ ξ = x + θΔx कुछ के लिए 0 < θ < 1. यदि Δx छोटा है, तो दूसरा ऑर्डर शब्द नगण्य है, जिससे Δy, व्यावहारिक उद्देश्यों के लिए, अच्छी तरह से dy = f'(xx अनुमानित हो।

अवकलन समीकरण को फिर से लिखने के लिए अवकलन अक्सर उपयोगी होता है

प्रपत्र में

विशेष रूप से जब कोई वेरिएबल्स को अलग करना चाहता है।

टिप्पणियाँ

  1. For a detailed historical account of the differential, see Boyer 1959, especially page 275 for Cauchy's contribution on the subject. An abbreviated account appears in Kline 1972, Chapter 40.
  2. Cauchy explicitly denied the possibility of actual infinitesimal and infinite quantities (Boyer 1959, pp. 273–275), and took the radically different point of view that "a variable quantity becomes infinitely small when its numerical value decreases indefinitely in such a way as to converge to zero" (Cauchy 1823, p. 12; translation from Boyer 1959, p. 273).
  3. Boyer 1959, p. 275
  4. Boyer 1959, p. 12: "The differentials as thus defined are only new variables, and not fixed infinitesimals..."
  5. Courant 1937a, II, §9: "Here we remark merely in passing that it is possible to use this approximate representation of the increment by the linear expression to construct a logically satisfactory definition of a "differential", as was done by Cauchy in particular."
  6. Boyer 1959, p. 284
  7. See, for instance, the influential treatises of Courant 1937a, Kline 1977, Goursat 1904, and Hardy 1908. Tertiary sources for this definition include also Tolstov 2001 and Itô 1993, §106.
  8. Cauchy 1823. See also, for instance, Goursat 1904, I, §14.
  9. Goursat 1904, I, §14
  10. In particular to infinite dimensional holomorphy (Hille & Phillips 1974) and numerical analysis via the calculus of finite differences.
  11. Goursat 1904, I, §17
  12. Goursat 1904, I, §§14,16
  13. Eisenbud & Harris 1998.
  14. See Kock 2006 and Moerdijk & Reyes 1991.
  15. See Robinson 1996 and Keisler 1986.


यह भी देखें

  • विभेदीकरण के लिए संकेतन

संदर्भ


बाहरी संबंध