क्रमित युग्म

From alpha
Jump to navigation Jump to search
विश्लेषणात्मक ज्यामिति यूक्लिडियन विमान में प्रत्येक बिंदु को एक आदेशित जोड़ी से जोड़ती है। लाल दीर्घवृत्त सभी युग्मों (x, y) के समुच्चय से जुड़ा है जैसे कि x2/4+य2=1.

गणित में, क्रमित युग्म (, बी) वस्तुओं का युग्म है। जिस क्रम में वस्तुएं दिखाई देती हैं वह महत्वपूर्ण है क्रमित युग्म (, बी) क्रमित युग्म (बी, ) से भिन्न है जब तक' 'ए' = 'बी' न हो। (इसके विपरीत, अव्यवस्थित युग्म {, बी} अव्यवस्थित युग्म {बी, } के बराबर होती है।)

क्रमित युग्मों को 2-टुपल्स, या अनुक्रम (कभी-कभी, कंप्यूटर विज्ञान के संदर्भ में सूचियाँ) 2 लंबाई भी कहा जाता है। अदिशों के क्रमित युग्मों को कभी-कभी 2-आयामी सदिश (गणित और भौतिकी) कहा जाता है। (तकनीकी रूप से, यह शब्दावली का दुरुपयोग है क्योंकि ऑर्डर किए गए युग्मों को सदिश स्थल का तत्व नहीं होना चाहिए।)ऑर्डर किए गए युग्मों की प्रविष्टियां अन्य ऑर्डर किए गए युग्म हो सकते हैं, जो ऑर्डर किए गए एन -ट्यूपल्स (n ऑब्जेक्ट्स की ऑर्डर की गई सूचियां) की रिकर्सिव परिभाषा को सक्षम करते हैं। उदाहरण के लिए, आदेशित ट्रिपल (ए, बी, सी) को (, (बी,सी)) के रूप में परिभाषित किया जा सकता है। , अर्थात, एक जोड़ी के रूप में दूसरे में नेस्टेड

आदेशित युग्म (a, b) में, वस्तु a को पहली प्रवेश कहा जाता है, और वस्तु b को युग्म की दूसरी प्रवेश कहलाती है। वैकल्पिक रूप से, वस्तुओं को पहले और दूसरे घटक, पहले और दूसरे निर्देशांक, या आदेशित जोड़ी के बाएं और दाएं अनुमान कहा जाता है।

कार्तीय गुणनफल और द्विआधारी संबंध (और इसलिए फलन (गणित)) क्रमित युग्मों के रूप में परिभाषित किए गए हैं, cf. चित्र।

सामान्यता

होने देना तथा जोड़े का आदेश दिया जाए। फिर आदेशित जोड़ी की विशेषता (या परिभाषित) संपत्ति है:

सभी क्रमित युग्मों का समुच्चय (गणित) जिसकी पहली प्रविष्टि किसी समुच्चय A में है और जिसकी दूसरी प्रविष्टि किसी समुच्चय B में है, A और B का कार्तीय गुणन कहलाता है, और A × B लिखा जाता है। समुच्चय A और B के बीच एक द्विआधारी संबंध A × B का उपसमुच्चय है। (a, b) }} संकेतन का उपयोग अन्य उद्देश्यों के लिए किया जा सकता है, विशेष रूप से वास्तविक संख्या रेखा पर खुले अंतराल को दर्शाने के रूप में। ऐसी स्थितियों में, संदर्भ आमतौर पर यह स्पष्ट कर देगा कि कौन सा अर्थ अभिप्रेत है।[1][2] अतिरिक्त स्पष्टीकरण के लिए, आदेशित जोड़ी को वेरिएंट नोटेशन द्वारा दर्शाया जा सकता है , लेकिन इस अंकन के अन्य उपयोग भी हैं।

<स्पैन आईडी = प्रोजेक्शन> एक जोड़ी p के बाएँ और दाएँ प्रक्षेपण को आमतौर पर द्वारा निरूपित किया जाता है π1(पी) और π2(पी), या द्वारा π(पी) और πr(पी), क्रमशः। ऐसे संदर्भों में जहां मनमाने ढंग से एन-टुपल्स पर विचार किया जाता है, πn
i
(टी) एन-ट्यूपल टी के आई-वें घटक के लिए एक आम संकेत है।

अनौपचारिक और औपचारिक परिभाषाएँ

कुछ परिचयात्मक गणित की पाठ्यपुस्तकों में क्रमबद्ध युग्म की एक अनौपचारिक (या सहज) परिभाषा दी गई है, जैसे <ब्लॉककोट> किन्हीं दो वस्तुओं के लिए a तथा b, आदेशित जोड़ी (a, b) दो वस्तुओं को निर्दिष्ट करने वाला एक अंकन है a तथा b, उस क्रम में।[3] </ब्लॉककोट> इसके बाद आमतौर पर दो तत्वों के एक सेट की तुलना की जाती है; यह इंगित करते हुए कि एक सेट में a तथा b अलग होना चाहिए, लेकिन एक आदेशित जोड़ी में वे समान हो सकते हैं और जबकि एक सेट के तत्वों को सूचीबद्ध करने का क्रम मायने नहीं रखता है, एक आदेशित जोड़ी में अलग-अलग प्रविष्टियों के क्रम को बदलने से क्रमित जोड़ी बदल जाती है।

यह परिभाषा असंतोषजनक है क्योंकि यह केवल वर्णनात्मक है और आदेश की सहज समझ पर आधारित है। हालांकि, जैसा कि कभी-कभी बताया गया है, इस विवरण पर भरोसा करने से कोई नुकसान नहीं होगा और लगभग हर कोई इस तरीके से आदेशित जोड़े के बारे में सोचता है।[4] एक अधिक संतोषजनक दृष्टिकोण यह देखना है कि गणित में क्रमित युग्मों की भूमिका को समझने के लिए ऊपर दिए गए क्रमित युग्मों के चारित्रिक गुणों की आवश्यकता है। इसलिए आदेशित जोड़ी को एक आदिम धारणा के रूप में लिया जा सकता है, जिसका संबद्ध अभिगृहीत अभिलाक्षणिक गुण है। यह निकोलस बॉरबाकी द्वारा लिया गया दृष्टिकोण था | एन। 1954 में प्रकाशित अपने थ्योरी ऑफ सेट्स में बोरबाकी समूह। हालांकि, इस दृष्टिकोण में इसकी कमियां भी हैं क्योंकि आदेशित जोड़े के अस्तित्व और उनकी विशिष्ट संपत्ति दोनों को स्वयंसिद्ध माना जाना चाहिए।[3]

आदेशित जोड़े से सख्ती से निपटने का एक और तरीका उन्हें सेट सिद्धांत के संदर्भ में औपचारिक रूप से परिभाषित करना है। यह कई तरीकों से किया जा सकता है और इसका लाभ यह है कि सेट सिद्धांत को परिभाषित करने वाले स्वयंसिद्धों से अस्तित्व और विशिष्ट संपत्ति को सिद्ध किया जा सकता है। इस परिभाषा के सबसे उद्धृत संस्करणों में से एक कुराटोव्स्की (नीचे देखें) के कारण है और उनकी परिभाषा का उपयोग 1970 में प्रकाशित बॉरबाकी के थ्योरी ऑफ़ सेट्स के दूसरे संस्करण में किया गया था। यहां तक ​​कि उन गणितीय पाठ्यपुस्तकों में भी जो आदेशित जोड़े की अनौपचारिक परिभाषा देती हैं एक अभ्यास में कुराटोस्की की औपचारिक परिभाषा का उल्लेख कीजिए।

== समुच्चय सिद्धान्त == का उपयोग करके ऑर्डर किए गए जोड़े को परिभाषित करना

यदि कोई इस बात से सहमत है कि सेट सिद्धांत गणित की एक आकर्षक नींव है, तो सभी गणितीय वस्तुओं को किसी प्रकार के सेट (गणित) के रूप में परिभाषित किया जाना चाहिए। इसलिए यदि क्रमित युग्म आदिम के रूप में नहीं लिया जाता है, तो इसे समुच्चय के रूप में परिभाषित किया जाना चाहिए।[5] आदेशित जोड़ी की कई सेट-सैद्धांतिक परिभाषाएँ नीचे दी गई हैं (यह भी देखें [6]).

वीनर की परिभाषा

नॉर्बर्ट वीनर ने 1914 में आदेशित जोड़ी की पहली सेट सैद्धांतिक परिभाषा प्रस्तावित की:[7]

उन्होंने देखा कि इस परिभाषा ने गणितीय सिद्धांत के प्रकार सिद्धांत को सेट के रूप में परिभाषित करना संभव बना दिया। प्रिन्सिपिया मैथेमेटिका ने आदिम धारणा के रूप में प्रकार, और इसलिए सभी अर्थों का संबंध (गणित) लिया था।

वीनर ने का इस्तेमाल किया{{b}} {बी} के बजाय परिभाषा को प्रकार सिद्धांत के साथ संगत बनाने के लिए जहां कक्षा में सभी तत्व एक ही प्रकार के होने चाहिए। बी के साथ एक अतिरिक्त सेट के भीतर नेस्टेड, इसका प्रकार इसके बराबर है 'एस।

हौसडॉर्फ की परिभाषा

लगभग उसी समय वीनर (1914) के रूप में, फेलिक्स हॉसडॉर्फ ने अपनी परिभाषा प्रस्तावित की:

जहाँ 1 और 2 a और b से भिन्न दो अलग-अलग वस्तुएँ हैं।[8]


कुराटोस्की की परिभाषा

1921 में काज़िमिर्ज़ कुराटोव्स्की ने अब स्वीकृत परिभाषा की पेशकश की[9][10] आदेशित जोड़ी की (ए, बी):

ध्यान दें कि इस परिभाषा का उपयोग तब भी किया जाता है जब पहले और दूसरे निर्देशांक समान हों:

कुछ क्रमित युग्म p को देखते हुए, गुण x, p का पहला निर्देशांक है, इस प्रकार तैयार किया जा सकता है:

संपत्ति x p का दूसरा निर्देशांक है जिसे इस प्रकार तैयार किया जा सकता है:

इस मामले में कि बाएँ और दाएँ निर्देशांक समान हैं, दाएँ संयोजन तुच्छ रूप से सत्य है, क्योंकि Y1 ≠ और2 ऐसा कभी नहीं होता।

यह है कि हम एक जोड़ी के पहले समन्वय को कैसे निकाल सकते हैं (इटरेटेड बाइनरी ऑपरेशन # नोटेशन | इटरेटेड-ऑपरेशन नोटेशन फॉर इंटरसेक्शन (सेट थ्योरी) # आर्बिट्रेरी इंटरसेक्शन और यूनियन (सेट थ्योरी) # आर्बिट्रेरी यूनियनों का उपयोग करके):

इस प्रकार दूसरा निर्देशांक निकाला जा सकता है:


प्रकार

आदेशित युग्म की उपर्युक्त कुराटोव्स्की परिभाषा पर्याप्त है क्योंकि यह उन चारित्रिक गुणधर्मों को संतुष्ट करती है जो एक क्रमित युग्म को संतुष्ट करना चाहिए, अर्थात वह . विशेष रूप से, यह पर्याप्त रूप से 'आदेश' व्यक्त करता है झूठा है जब तक . समान या कम जटिलता की अन्य परिभाषाएँ हैं, जो समान रूप से पर्याप्त हैं:

  • [11]

विपरीत परिभाषा केवल कुराटोस्की परिभाषा का एक तुच्छ संस्करण है, और इस तरह कोई स्वतंत्र हित नहीं है। परिभाषा को छोटा कहा जाता है क्योंकि इसमें ब्रेसिज़ (विराम चिह्न) के तीन जोड़े के बजाय दो की आवश्यकता होती है। यह साबित करने के लिए कि विशिष्ट संपत्ति को छोटा संतुष्ट करता है, नियमितता के ज़र्मेलो-फ्रेंकेल सेट सिद्धांत सिद्धांत की आवश्यकता होती है।[12] इसके अलावा, यदि कोई वॉन न्यूमैन ऑर्डिनल | वॉन न्यूमैन के प्राकृतिक संख्याओं के सेट-थ्योरिटिक निर्माण का उपयोग करता है, तो 2 को सेट {0, 1} = {0, {0}} के रूप में परिभाषित किया जाता है, जो जोड़ी (0, 0)short. फिर भी छोटी जोड़ी का एक और नुकसान यह तथ्य है कि भले ही और बी एक ही प्रकार के हों, छोटी जोड़ी के तत्व नहीं हैं। (हालांकि, यदि a = b तो लघु संस्करण में कार्डिनलिटी 2 बनी रहती है, जो कि किसी भी जोड़ी से उम्मीद की जा सकती है, जिसमें कोई भी आदेशित जोड़ी शामिल है।

सिद्ध करना कि परिभाषाएँ विशेषता गुण को संतुष्ट करती हैं

साबित करें: (ए, बी) = (सी, डी) अगर और केवल अगर ए = सी और बी = डी।

'कुरातोवस्की':
यदि। यदि ए = सी और बी = डी, तो {{a}, {a, b}} = {{c}, {c, d}}. इस प्रकार (ए, बी)K = (सी, डी)K.

केवल। दो मामले: ए = बी, और ए ≠ बी।

अगर ए = बी:

(ए, बी)K = {{a}, {a, b}} = {{a}, {a, a}} = {{a}}.
{{c}, {c, d}} = (सी, डी)K = (ए, बी)K = {{a}}.
इस प्रकार {सी} = {सी, डी} = {ए}, जिसका अर्थ है ए = सी और ए = डी। परिकल्पना से, ए = बी। इसलिए बी = डी।

यदि a ≠ b, तो (a, b)K = (सी, डी)K तात्पर्य {{a}, {a, b}} = {{c}, {c, d}}.

मान लीजिए {सी, डी} = {ए}। तब सी = डी = ए, और इसलिए {{c}, {c, d}} = {{a}, {a, a}} = {{a}, {a}} = {{a}}. परन्तु फिर {{a}, {a, b}} के बराबर भी होगा{{a}}, ताकि b = a जो a ≠ b के विपरीत हो।
मान लीजिए {सी} = {ए, बी}। तब a = b = c, जो a ≠ b का भी विरोध करता है।
इसलिए {c} = {a}, ताकि c = a और {c, d} = {a, b} हो।
यदि d = a सत्य थे, तो {c, d} = {a, a} = {a} ≠ {a, b}, एक विरोधाभास। इस प्रकार d = b स्थिति है, ताकि a = c और b = d हो।

'रिवर्स':
(ए, बी)reverse = {{b}, {a, b}} = {{b}, {b, a}} = (बी, ए)K.

यदि। अगर (ए, बी)reverse = (सी, डी)reverse, (बी ० ए)K = (डी, सी)K. इसलिए, बी = डी और ए = सी।

केवल। यदि ए = सी और बी = डी, तो {{b}, {a, b}} = {{d}, {c, d}}. इस प्रकार (ए, बी)reverse = (सी, डी)reverse.

छोटा:[13] यदि: यदि a = c और b = d, तो {a, {a, b}} = {c, {c, d}}। इस प्रकार (ए, बी)short = (सी, डी)short.

केवल अगर: मान लीजिए {ए, {ए, बी}} = {सी, {सी, डी}}। तब a बाएं हाथ की ओर है, और इस प्रकार दाहिने हाथ की ओर है। क्योंकि समान समुच्चय में समान अवयव होते हैं, a = c या a = {c, d} में से कोई एक मामला होना चाहिए।

यदि a = {c, d}, तो उपरोक्त समान तर्क के अनुसार, {a, b} दाहिने हाथ की ओर है, इसलिए {a, b} = c या {a, b} = {c, d}।
यदि {ए, बी} = सी तो सी {सी, डी} = ए में है और ए सी में है, और यह संयोजन नियमितता के सिद्धांत के विपरीत है, क्योंकि {ए, सी} में संबंध तत्व के तहत कोई न्यूनतम तत्व नहीं है का।
यदि {ए, बी} = {सी, डी}, तो ए, ए का एक तत्व है, ए = {सी, डी} = {ए, बी} से, फिर से नियमितता का विरोध करता है।
इसलिए a = c धारण करना चाहिए।

दोबारा, हम देखते हैं कि {ए, बी} = सी या {ए, बी} = {सी, डी}।

विकल्प {ए, बी} = सी और ए = सी का तात्पर्य है कि सी नियमितता के विपरीत, सी का एक तत्व है।
तो हमारे पास a = c और {a, b} = {c, d}, और इसलिए: {b} = {a, b} \ {a} = {c, d} \ {c} = {d} , तो बी = डी।

क्विन-रॉसर परिभाषा

जे. बार्कले रोसेर (1953)[14] विलार्ड वैन ऑरमन क्वीन के कारण आदेशित जोड़ी की एक परिभाषा नियोजित की गई जिसके लिए प्राकृतिक संख्याओं की पूर्व परिभाषा की आवश्यकता होती है। होने देना प्राकृतिक संख्याओं का समुच्चय बनें और पहले परिभाषित करें

कार्यक्रम यदि यह एक प्राकृतिक संख्या है और इसे अन्यथा छोड़ देता है तो इसके तर्क को बढ़ा देता है; संख्या 0 के कार्यात्मक मान के रूप में प्रकट नहीं होता है . जैसा के तत्वों का समुच्चय है अंदर नही पुरानी शैली का

यह छवि (गणित) # एक सेट के सबसेट की छवि है नीचे , छवि (गणित)#अन्य शब्दावली द्वारा भी। आवेदन समारोह एक सेट x में बस इसमें प्रत्येक प्राकृतिक संख्या में वृद्धि होती है। विशेष रूप से, में कभी भी 0 नहीं होता है, ताकि किसी भी सेट x और y के लिए,

आगे परिभाषित करें

इस के द्वारा, में हमेशा संख्या 0 होती है।

अंत में, आदेशित जोड़ी (ए, बी) को अलग संघ के रूप में परिभाषित करें

(जो है वैकल्पिक संकेतन में)।

जोड़ी के सभी तत्वों को निकालना जिसमें 0 नहीं है और पूर्ववत करना पैदावार ए। इसी तरह, बी को उस जोड़ी के तत्वों से पुनर्प्राप्त किया जा सकता है जिसमें 0 होता है।[15] उदाहरण के लिए, जोड़ी के रूप में एन्कोड किया गया है बशर्ते .

टाइप थ्योरी में और उसके परिणाम में जैसे स्वयंसिद्ध सेट थ्योरी नई नींव, क्वीन-रॉसर जोड़ी के अनुमानों के समान ही है और इसलिए इसे टाइप-लेवल ऑर्डरेड जोड़ी कहा जाता है। इसलिए इस परिभाषा में एक फ़ंक्शन (गणित) को सक्षम करने का लाभ है, जिसे आदेशित जोड़े के एक सेट के रूप में परिभाषित किया गया है, इसके तर्कों के प्रकार से केवल 1 उच्च प्रकार है। यह परिभाषा तभी काम करती है जब प्राकृतिक संख्याओं का समुच्चय अनंत हो। न्यू फ़ाउंडेशन में ऐसा होता है, लेकिन टाइप थ्योरी या न्यू फ़ाउंडेशन में नहीं। जे। बार्कले रोसेर ने दिखाया कि इस तरह के एक प्रकार-स्तरीय आदेशित जोड़ी (या यहां तक ​​​​कि 1 आदेशित जोड़ी द्वारा टाइप-रेज़िंग) का अस्तित्व अनंत के स्वयंसिद्ध का अर्थ है। क्विनियन सेट सिद्धांतों के संदर्भ में आदेशित जोड़ी की व्यापक चर्चा के लिए, होम्स (1998) देखें।[16]


कैंटर–फ्रीज परिभाषा

सेट सिद्धांत के विकास के आरंभ में, विरोधाभासों की खोज से पहले, कैंटर ने दो सेटों की क्रमबद्ध जोड़ी को इन सेटों के बीच धारण करने वाले सभी संबंधों के वर्ग के रूप में परिभाषित करके फ्रीज का अनुसरण किया, यह मानते हुए कि संबंध की धारणा आदिम है:[17]

यह परिभाषा अधिकांश आधुनिक औपचारिक सेट सिद्धांतों में अस्वीकार्य है और एक सेट की प्रमुखता को परिभाषित करने के लिए पद्धतिगत रूप से समान है, जो दिए गए सेट के साथ सभी सेटों के वर्ग के रूप में है।[18]


मोर्स परिभाषा

मोर्स-केली सेट सिद्धांत उचित वर्गों का मुफ्त उपयोग करता है।[19] एंथोनी मोर्स ने आदेशित जोड़ी को परिभाषित किया ताकि इसके अनुमान उचित वर्ग और साथ ही सेट हो सकें। (कुरातोव्स्की की परिभाषा इसकी अनुमति नहीं देती है।) उन्होंने सबसे पहले आदेशित युग्मों को परिभाषित किया जिनके प्रक्षेपण कुराटोस्की के तरीके से निर्धारित किए गए हैं। उन्होंने फिर जोड़ी को फिर से परिभाषित किया

जहां घटक कार्टेशियन उत्पाद सेट के कुराटोस्की जोड़े हैं और जहां

यह संभावित युग्मों को प्रस्तुत करता है जिनके प्रक्षेपण उचित वर्ग हैं। उपरोक्त क्विन-रॉसर परिभाषा भी उचित वर्गों को अनुमानों के रूप में स्वीकार करती है। इसी प्रकार ट्रिपल को 3-ट्यूपल के रूप में निम्नानुसार परिभाषित किया गया है:

सिंगलटन सेट का उपयोग जिसमें एक डाला हुआ खाली सेट है, टुपल्स को विशिष्टता की संपत्ति रखने की अनुमति देता है कि यदि a एक n-tuple है और b एक m-tuple है और a = b है तो n = m। आदेशित त्रिक जो क्रमित जोड़े के रूप में परिभाषित हैं, उनके पास क्रमित जोड़े के संबंध में यह संपत्ति नहीं है।

स्वयंसिद्ध परिभाषा

ऑर्डर किए गए जोड़े को Zermelo-Fraenkel सेट थ्योरी (ZF) में केवल ZF में एक नया फंक्शन सिंबल जोड़कर स्वयंसिद्ध रूप से पेश किया जा सकता है। arity 2 (यह आमतौर पर छोड़ दिया जाता है) और एक परिभाषित स्वयंसिद्ध के लिए :

यह परिभाषा स्वीकार्य है क्योंकि ZF का यह विस्तार एक रूढ़िवादी विस्तार है।[citation needed] परिभाषा तथाकथित आकस्मिक प्रमेयों जैसे (a,a) = से बचने में मदद करती है{{a}}, {a} ∈ (a,b), यदि Kuratowski की परिभाषा (a,b) = {{a}, {a,b}} का प्रयोग किया गया।

श्रेणी सिद्धांत

सेट उत्पाद एक्स के लिए कम्यूटेटिव आरेख1×X2.

एक श्रेणी-सैद्धांतिक उत्पाद (श्रेणी सिद्धांत) सेट की एक श्रेणी में ए × बी आदेशित जोड़े के सेट का प्रतिनिधित्व करता है, जिसमें पहला तत्व ए से आता है और दूसरा बी से आता है। इस संदर्भ में ऊपर की विशेषता संपत्ति का एक परिणाम है उत्पाद की सार्वभौमिक संपत्ति और तथ्य यह है कि एक सेट एक्स के तत्वों को 1 (एक तत्व सेट) से एक्स तक आकारिकी के साथ पहचाना जा सकता है। जबकि विभिन्न वस्तुओं में सार्वभौमिक संपत्ति हो सकती है, वे सभी स्वाभाविक रूप से आइसोमोर्फिक हैं।

यह भी देखें

  • कार्तीय गुणन
  • टार्स्की-ग्रोथेंडिक सेट थ्योरी
  • ट्रायबुलेक, आंद्रेज, 1989, टार्स्की-ग्रोथेंडीक सेट थ्योरी, जर्नल ऑफ़ फॉर्मलाइज्ड मैथमेटिक्स (परिभाषा Def5 ऑर्डर किए गए जोड़े की { { x) ,y}, {x}})


इस पेज में लापता आंतरिक लिंक की सूची

  • अंडाकार
  • अक्रमित जोड़ी
  • अंक शास्त्र
  • समारोह (गणित)
  • पुनरावर्ती परिभाषा
  • सबसेट
  • सेट (गणित)
  • खुला अंतराल
  • गणित की नींव
  • इकट्ठा
  • नियमितता का स्वयंसिद्ध
  • अनंत का स्वयंसिद्ध
  • क्रमविनिमेय आरेख
  • सेट की श्रेणी

संदर्भ

  1. Lay, Steven R. (2005), Analysis / With an Introduction to Proof (4th ed.), Pearson / Prentice Hall, p. 50, ISBN 978-0-13-148101-5
  2. Devlin, Keith (2004), Sets, Functions and Logic / An Introduction to Abstract Mathematics (3rd ed.), Chapman & Hall / CRC, p. 79, ISBN 978-1-58488-449-1
  3. 3.0 3.1 Wolf, Robert S. (1998), Proof, Logic, and Conjecture / The Mathematician's Toolbox, W. H. Freeman and Co., p. 164, ISBN 978-0-7167-3050-7
  4. Fletcher, Peter; Patty, C. Wayne (1988), Foundations of Higher Mathematics, PWS-Kent, p. 80, ISBN 0-87150-164-3
  5. Quine has argued that the set-theoretical implementations of the concept of the ordered pair is a paradigm for the clarification of philosophical ideas (see "Word and Object", section 53). The general notion of such definitions or implementations are discussed in Thomas Forster "Reasoning about theoretical entities".
  6. Dipert, Randall. "क्रमबद्ध जोड़े के सेट-सैद्धांतिक प्रतिनिधित्व और संबंधों के तर्क के लिए उनकी पर्याप्तता।".{{cite web}}: CS1 maint: url-status (link)
  7. Wiener's paper "A Simplification of the logic of relations" is reprinted, together with a valuable commentary on pages 224ff in van Heijenoort, Jean (1967), From Frege to Gödel: A Source Book in Mathematical Logic, 1979–1931, Harvard University Press, Cambridge MA, ISBN 0-674-32449-8 (pbk.). van Heijenoort states the simplification this way: "By giving a definition of the ordered pair of two elements in terms of class operations, the note reduced the theory of relations to that of classes".
  8. cf introduction to Wiener's paper in van Heijenoort 1967:224
  9. cf introduction to Wiener's paper in van Heijenoort 1967:224. van Heijenoort observes that the resulting set that represents the ordered pair "has a type higher by 2 than the elements (when they are of the same type)"; he offers references that show how, under certain circumstances, the type can be reduced to 1 or 0.
  10. Kuratowski, Casimir (1921). "सेट थ्योरी में आदेश की धारणा पर" (PDF). Fundamenta Mathematicae. 2 (1): 161–171. doi:10.4064/fm-2-1-161-171. Archived from the original (PDF) on 2019-04-29. Retrieved 2013-05-29.
  11. This differs from Hausdorff's definition in not requiring the two elements 0 and 1 to be distinct from a and b.
  12. Tourlakis, George (2003) Lectures in Logic and Set Theory. Vol. 2: Set Theory. Cambridge Univ. Press. Proposition III.10.1.
  13. For a formal Metamath proof of the adequacy of short, see here (opthreg). Also see Tourlakis (2003), Proposition III.10.1.
  14. J. Barkley Rosser, 1953. Logic for Mathematicians. McGraw–Hill.
  15. Holmes, M. Randall: On Ordered Pairs, on: Boise State, March 29, 2009. The author uses for and for .
  16. Holmes, M. Randall (1998) Elementary Set Theory with a Universal Set Archived 2011-04-11 at the Wayback Machine. Academia-Bruylant. The publisher has graciously consented to permit diffusion of this monograph via the web.
  17. Frege, Gottlob (1893). अंकगणित के बुनियादी नियम (PDF). Jena: Verlag Hermann Pohle. §144
  18. Kanamori, Akihiro (2007). सेट थ्योरी फ्रॉम कैंटर टू कोहेन (PDF). Elsevier BV. p. 22, footnote 59
  19. Morse, Anthony P. (1965). सेट का सिद्धांत. Academic Press.